Volume 27, Issue 4 (7-2023)                   IBJ 2023, 27(4): 214-218 | Back to browse issues page

Ethics code: IR.MAZUMS.IMAMHOSPITAL.REC.1399.8204


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi M, Asgarian-Omran H, Najfi A, Valadan R, Karami H, Naderisoraki M, et al . Evaluation of mRNA Expression of CD244 and Its Adapter Molecules in CD8+ T Cells in Acute Leukemia. IBJ 2023; 27 (4) :214-218
URL: http://ibj.pasteur.ac.ir/article-1-3843-en.html
Abstract:  
Background: This study investigated the role of the immune-checkpoint receptor (ICR), CD244, and its adapter molecules, in CD8+ T cells in acute leukemia.
Methods: Blood samples were obtained from 21 acute lymphoblastic leukemia (ALL) and 6 acute myeloid leukemia (AML) patients and 20 control subjects. Relative gene expression of CD244, immune receptor tyrosine-based switch motif-associated protein (SA), EWS/FLI1-activated transcript 2 (EAT-2), and LncRNA-GSTT1-AS1 were evaluated using quantitative reverse transcription polymerase chain reaction.
Results: Expression of CD244, SAP, and EAT-2 were significantly lower in CD8+ T cells from ALL patients than those from control subjects. Interestingly, the expression of SAP was much lower than that of CD244, indicating a lower ratio of SAP to CD244. Also, SAP expression was significantly lower in AML patients compared to the control group. Expression of LncRNA-GSTT1-AS1 showed no significant difference in ALL and AML patients compared to control subjects.
Conclusion: The low SAP/CD244 expression ratio in CD8+ T cells in ALL suggests an inhibitory role for CD244 in ALL.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood cancer journal 2017; 7(6): e577. [DOI:10.1038/bcj.2017.53]
2. Meyers J, Yu Y, Kaye JA, Davis KL. Medicare fee-for-service enrollees with primary acute myeloid leukemia: an analysis of treatment patterns, survival, and healthcare resource utilization and costs. Applied health economics and health policy 2013; 11(3): 275-286. [DOI:10.1007/s40258-013-0032-2]
3. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nature reviews immunology 2015; 15(8): 486-499. [DOI:10.1038/nri3862]
4. Agresta L, Lehn M, Lampe K, Cantrell R, Hennies C, Szabo S, Wise-Draper T, Conforti L, Hoebe K, Janssen EM. CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. Journal for immunotherapy of cancer 2020; 8(1):e000245. [DOI:10.1136/jitc-2019-000245]
5. Chen R, Relouzat F, Roncagalli R, Aoukaty A, Tan R, Latour S, Veillette A. Molecular dissection of 2B4 signaling: implications for signal transduction by SLAM-related receptors. Molecular and cellular biology 2004; 24(12): 5144-5156. [DOI:10.1128/MCB.24.12.5144-5156.2004]
6. Wang N, Calpe S, Westcott J, Castro W, Ma C, Engel P, Schatzle J, Terhorst C. The adapters EAT-2A and -2B are positive regulators of CD244- and CD84-dependent NK cell functions in the C57BL/6 mouse. The journal of immunology 2010; 185(10): 5683-5687. [DOI:10.4049/jimmunol.1001974]
7. Roncagalli R, Taylor JER, Zhang S, Shi X, Chen R, Cruz-Munoz ME, Yin L, Latour S, Veillette A. Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nature immunology 2005; 6(10): 1002-1010. [DOI:10.1038/ni1242]
8. Raziorrouh B, Schraut W, Gerlach T, Nowack D, Grüner NH, Ulsenheimer A, Zachoval R, Wächtler M, Spannagl M, Haas J, Diepolder HM, Jung MC. The immuno-regulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatology 2010; 52(6): 1934-1947. [DOI:10.1002/hep.23936]
9. Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, Greil R, Jöhrer K. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. Journal of hematology and oncology 2016; 9(1): 116. [DOI:10.1186/s13045-016-0345-3]
10. Tan J, Chen S, Lu Y, Yao D, Xu L, Zhang Y, Yang L, Jie Chen J, Lai J, Yu Z, Zhu K, Li Y. Higher PD-1 expression concurrent with exhausted CD8+ T cells in patients with de novo acute myeloid leukemia. Chinese journal of cancer research 2017; 29(5): 463-470. [DOI:10.21147/j.issn.1000-9604.2017.05.11]
11. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen THT, Maurer M, Korman AJ, Zarour HM. TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients. The journal of clinical investigation 2015; 125(5): 2046-2058. [DOI:10.1172/JCI80445]
12. Toor SM, Murshed K, Al-Dhaheri M, Khawar M, Abu Nada M, Elkord E. Immune checkpoints in circulating and tumor-infiltrating CD4+ T Cell subsets in colorectal cancer patients. Frontiers in immunology 2019; 10 :2936. [DOI:10.3389/fimmu.2019.02936]
13. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, Hanada KI, Almeida JR, Darko S, Douek DC, Yang JC, Rosenberg SA. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors. The journal of clinical investigation 2014; 124(5): 2246-2259. [DOI:10.1172/JCI73639]
14. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127(20): 2375-2390. [DOI:10.1182/blood-2016-01-643569]
15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
16. Wang Y, Zhong H, Xie X, Chen CY, Huang D, Shen L, Zhang H, Chen ZW, Zeng G. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proceedings of the national academy of sciences of the United States of America 2015; 112(29): E3883-E3892. [DOI:10.1073/pnas.1501662112]
17. Schlaphoff V, Lunemann S, Suneetha PV, Jaroszewicz J, Grabowski J, Dietz J, Helfritz F, Bektas H, Sarrazin C, Manns MP, Cornberg M, Wedemeyer H. Dual function of the NK cell receptor 2B4 (CD244) in the regulation of HCV-specific CD8+ T cells. PLoS pathogens 2011; 7(5): e1002045. [DOI:10.1371/journal.ppat.1002045]
18. Lichtenegger FS, Schnorfeil FM, Emmerig K, Neitz JS, Beck B, Draenert R, Hiddemann W, Subklewe M. Pseudo-Exhaustion Of CD8+ T cells in AML. Blood 2013; 122(21): 2615. [DOI:10.1182/blood.V122.21.2615.2615]
19. Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE. Exhaustion of tumor-specific CD8⁺ T cells in metastases from melanoma patients. The journal of clinical investigation 2011; 121(6): 2350-2360. [DOI:10.1172/JCI46102]
20. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annual review of biochemistry 2012; 81: 145-166. [DOI:10.1146/annurev-biochem-051410-092902]
21. Hu G, Tang Q, Sharma S, Yu F, Escobar TM, Muljo SA, Zhu J, Zhao K. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nature immunology 2013; 14(11): 1190-1198. [DOI:10.1038/ni.2712]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb