Volume 26, Issue 6 (11-2022)                   IBJ 2022, 26(6): 426-439 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadyousefi Y, Saidijam M, Amirheidari B, Rahbarizadeh F, Soleimani M. A Novel Hyperthermostable Recombinant Protein Nanocage. IBJ 2022; 26 (6) :426-439
URL: http://ibj.pasteur.ac.ir/article-1-3839-en.html
Abstract:  
Background: Ferritin has an important role in iron storage in the cells, and due to its nanocage structure and self-assembly properties, it has wide application prospects in nanobiotechnology.
Methods: The maize (Zea mays) ferritin gene ZmFer1 was cloned and expressed in Escherichia coli BL21 (DE3) for the first time. Change in macromolecular structure of ZmFer1 ferritin due to heat treatment was investigated using native PAGE electrophoresis, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Change in the secondary structures of the protein was evaluated using circular dichroism spectroscopy. Moreover, alteration in the conformation of the protein was evaluated using UV-absorption spectra and intrinsic fluorescence spectra. The melting temperature (Tm) of ZmFer1 was obtained using differential scanning calorimetry (DSC). Finally, the effect of heat on the function of ZmFer1 was assessed by iron loading ability.
Results: The purified ZmFer1 protein showed a homopolymer nanocage structure. The results of native PAGE electrophoresis, DLS, and TEM techniques showed that ZmFer1 protein nanocage is stable to heat treatment up to 90 °C, and some of the protein nanocages retain their macromolecular structures even at 100 °C in liquid aqueous solution. Based on the DSC results, ZmFer1 protein nanocage had a Tm of 81.9 °C. After treatment at 100 °C, stable ZmFer1 protein nanocages were able to store iron atoms.
Conclusion: Recombinant ZmFer1 ferritin with a Tm > 80°C is a hyperthermostable protein nanocage. The results of this study are beneficial for the development of protein nanocages that are stable under extreme temperature conditions, as well as application of ZmFer1 in nanobiotechnology, biomaterials, and biomedical fields.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Briat JF, Lobréaux S. Iron transport and storage in plants. Trends in plant science 1997; 2(5): 187-193. [DOI:10.1016/S1360-1385(97)85225-9]
2. Zhang C, Zhang X, Zhao G. Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. Nanomaterials 2020; 10(9): 1894. [DOI:10.3390/nano10091894]
3. Zang J, Chen H, Zhao G, Wang F, Ren F. Ferritin cage for encapsulation and delivery of bioactive nutrients: From structure, property to applications. Critical reviews in food science and nutrition 2017; 57(17): 3673-3683. [DOI:10.1080/10408398.2016.1149690]
4. Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Molecular medicine 2022; 28(1): 1-42. [DOI:10.1186/s10020-022-00435-2]
5. Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK, Nattermann U, Xu C, Huang PS, Ravichandran R. Design of a hyperstable 60-subunit protein icosahedron. Nature 2016; 535(7610): 136-139. [DOI:10.1038/nature18010]
6. Zhang X, Zang J, Chen H, Zhou K, Zhang T, Lv C, Zhao G. Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface. RSC advances 2019; 9(43): 24777-24782. [DOI:10.1039/C9RA04785A]
7. Somero GN. Proteins and temperature. Annual review of physiology 1995; 57(1): 43-68. [DOI:10.1146/annurev.ph.57.030195.000355]
8. Kilara A, Sharkasi TY, Morr CV. Effects of temperature on food proteins and its implications on functional properties. Critical reviews in food science and nutrition 1986; 23(4): 323-395. [DOI:10.1080/10408398609527429]
9. Olivos-Lugo B, Valdivia-López M, Tecante A. Thermal and physicochemical properties and nutritional value of the protein fraction of Mexican chia seed (Salvia hispanica L.). Food science and technology international 2010; 16(1): 89-96. [DOI:10.1177/1082013209353087]
10. Van der Plancken I, Van Loey A, Hendrickx ME. Effect of heat-treatment on the physico-chemical properties of egg white proteins: A kinetic study. Journal of food engineering 2006; 75(3): 316-326. [DOI:10.1016/j.jfoodeng.2005.04.019]
11. Skipnes D, Van der Plancken I, Van Loey A, Hendrickx ME. Kinetics of heat denaturation of proteins from farmed Atlantic cod (Gadus morhua). Journal of food engineering 2008; 85(1): 51-58. [DOI:10.1016/j.jfoodeng.2007.06.030]
12. Wang Z, Li Y, Jiang L, Qi B, Zhou L. Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of chemistry 2014; 2014: 1-10. [DOI:10.1155/2014/475389]
13. Ovissipour M, Rasco B, Tang J, Sablani S. Kinetics of protein degradation and physical changes in thermally processed Atlantic salmon (Salmo salar). Food and bioprocess technology 2017; 10(10): 1865-1882. [DOI:10.1007/s11947-017-1958-4]
14. Sheykhhasan M, Ahmadyousefi Y, Seyedebrahimi R, Tanzadehpanah H, Manoochehri H, Dama P, Hosseini NF, Akbari M, Farsani ME. DLX6-AS1: a putative lncRNA candidate in multiple human cancers. Expert reviews in molecular medicine 2021; 23: e17. [DOI:10.1017/erm.2021.17]
15. Li H, Tan X, Xia X, Zang J, Wang Z, Du M. Thermal treatment modified the physicochemical properties of recombinant oyster (Crassostrea gigas) ferritin. Food chemistry 2020; 314: 126210. [DOI:10.1016/j.foodchem.2020.126210]
16. Tang J, Yu Y, Chen H, Zhao G. Thermal treatment greatly improves storage stability and monodispersity of pea seed ferritin. Journal of food science 2019; 84(5): 1188-1193. [DOI:10.1111/1750-3841.14581]
17. Dula MW. Review on development and performance evaluation of maize Sheller. International journal of engineering research and technology 2019: 471-481.
18. Agricultural Prices Todays Report. United States Department of Agriculture (USDA), 2022. Available at: https://www.nass.usda.gov/Publications/Todays_Reports/reports/agpr0622.pdf
19. Fobis‐Loisy I, Loridon K, Lobréaux S, Lebrun M, Briat JF. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. European journal of biochemistry 1995; 231(3): 609-619. [DOI:10.1111/j.1432-1033.1995.tb20739.x]
20. Yunes RA. A circular dichroism study of the structure of Apis mellifera melittin. Archives of biochemistry and biophysics 1982; 216(2): 559-565. [DOI:10.1016/0003-9861(82)90245-4]
21. Chen YH, Yang JT, Martinez HM. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 1972; 11(22): 4120-4131. [DOI:10.1021/bi00772a015]
22. Gao H, Lei L, Liu J, Kong Q, Chen X, Hu Z. The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods. Journal of photochemistry and photobiology A: chemistry 2004; 167(2-3): 213-221. [DOI:10.1016/j.jphotochem.2004.05.017]
23. Tian J, Liu J, Hu Z, Chen X. Interaction of wogonin with bovine serum albumin. Bioorganic and medicinal chemistry 2005; 13(12): 4124-4129. [DOI:10.1016/j.bmc.2005.02.065]
24. Greenfield NJ, Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969; 8(10): 4108-4116. [DOI:10.1021/bi00838a031]
25. Tanzadehpanah H, Mahaki H, Moghadam NH, Salehzadeh S, Rajabi O, Najafi R, Amini R, Saidijam M. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. Journal of biomolecular structure and dynamics 2019; 37(4): 823-836. [DOI:10.1080/07391102.2018.1441073]
26. Tanzadehpanah H, Bahmani A, Hosseinpour Moghadam N, Gholami H, Mahaki H, Farmany A, Saidijam M. Synthesis, anticancer activity, and β‐lactoglobulin binding interactions of multitargeted kinase inhibitor sorafenib tosylate (SORt) using spectroscopic and molecular modelling approaches. Luminescence 2021; 36(1): 117-128. [DOI:10.1002/bio.3929]
27. Subhadarshanee B, Mohanty A, Jagdev MK, Vasudevan D, Behera RK. Surface charge dependent separation of modified and hybrid ferritin in native PAGE: Impact of lysine 104. Biochimica et biophysica acta. Proteins and proteomics 2017; 1865(10): 1267-1273. [DOI:10.1016/j.bbapap.2017.07.012]
28. Duy C, Fitter J. Thermostability of irreversible unfolding α-amylases analyzed by unfolding kinetics. Journal of biological chemistry 2005; 280(45): 37360-37365. [DOI:10.1074/jbc.M507530200]
29. Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal transduction and targeted therapy 2020; 5(1): 1-24. [DOI:10.1038/s41392-020-0194-y]
30. Krintel C, Klint C, Lindvall H, Mörgelin M, Holm C. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms. PLoS one 2010; 5(6): e11193. [DOI:10.1371/journal.pone.0011193]
31. Shu Y, Xue W, Xu X, Jia Z, Yao X, Liu S, Liu L. Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique. Food chemistry 2015; 173: 31-37. [DOI:10.1016/j.foodchem.2014.09.164]
32. Yang X, Liu J, Xie YL, Wang Y, Ying H, Wu Q, Huang W, Jenkins G. A novel microfluidic system for the rapid analysis of protein thermal stability. Analyst 2014; 139(11): 2683-2686. [DOI:10.1039/C4AN00173G]
33. Chang SKC, Zhang Y. Protein Analysis. In: Nielsen, SS (eds.) Food Analysis. Food Science Text Series. Springer: Cham, 2017. [DOI:10.1007/978-3-319-45776-5_18]
34. Lakowicz JR. Protein Fluorescence. In: Principles of Fluorescence Spectroscopy. Springer: Boston; 1983. [DOI:10.1007/978-1-4615-7658-7]
35. Durowoju IB, Bhandal KS, Hu J, Carpick B, Kirkitadze M. Differential scanning calorimetry- A method for assessing the thermal stability and conformation of protein antigen. Journal of visualized experiments 2017; (121): 55262. [DOI:10.3791/55262]
36. Stefanini S, Cavallo S, Wang CQ, Tataseo P, Vecchini P, Giartosio A, Chiancone E. Thermal stability of horse spleen apoferritin and human recombinant H apoferritin. Archives of biochemistry and biophysics 1996; 325(1): 58-64. [DOI:10.1006/abbi.1996.0007]
37. Berisio R, Barra G, Romano M, Squeglia F, Ruggiero A. Structural and Biochemical Characterization of Endo-β-1, 4-glucanase from Dictyoglomus thermophilum, a Hyperthermostable and Halotolerant Cellulase. Catalysts 2022; 12(3): 302. [DOI:10.3390/catal12030302]
38. Wang Y, Wang J, Zhang Z, Yang J, Turunen O, Xiong H. High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations. Appl microbiol biotechnol 2022; 106(5-6): 2017-2027. [DOI:10.1007/s00253-022-11823-3]
39. Zhao N, Schmitt MA, Fisk JD. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library. The FEBS journal 2016; 283(7): 1351-1367. [DOI:10.1111/febs.13674]
40. Coleman RG, Sharp KA. Shape and evolution of thermostable protein structure. Proteins 2010; 78(2): 420-433. [DOI:10.1002/prot.22558]
41. 41 Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and molecular biology reviews 2001; 65(1): 1-43. [DOI:10.1128/MMBR.65.1.1-43.2001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb