Volume 26, Issue 6 (11-2022)                   IBJ 2022, 26(6): 454-462 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari B, Keramati M, Ahangari Cohan R, Atyabi S M, Ali Hosseinzadeh S. Development of Streptococcus equisimilis Group G Mutant Strains with Ability to Produce Low Polydisperse and Low-Molecular-Weight Hyaluronic Acid. IBJ 2022; 26 (6) :454-462
URL: http://ibj.pasteur.ac.ir/article-1-3789-en.html
Abstract:  
Background: Hyaluronic acid (HA), a natural polymer with wide applications in biomedicine and cosmetics, is mainly produced by Streptococcal fermentation at industrial scale. In the present study, chemical random mutagenesis was used for development of Streptococcus equisimilis group G mutant strains with high HA productivity.
Methods: The optimum of the pH of culture condition and cultivation time for HA production by wild strain group G were assessed. At first, two rounds of mutation at different concentrations of NTG was used for mutagenesis. Then, the nonhemolytic and hyaluronidase-negative mutants were screened on the blood and HA agar. HA productivity and molecular weight were determined by carbazole assay, agarose gel electrophoresis and specific staining. Moreover, stability of the high producer mutants was evaluated within 10 generations.
Results: The results showed that the wild-type strain produced 1241 ± 2.1 µg/ml of HA at pH 5.5 and 4 hours of cultivation, while the screened mutants showed a 16.1-45.5% increase in HA production. Two mutant strains, named Gm2-120-21-3 (2470 ± 8.1 µg/ml) and Gm2-120-21-4 (2856 ± 4.2 µg/ml), indicated the highest titer and a consistent production. The molecular weight (Mw) of HA for the mutants was less than 160 kDa, considering as a low Mw HA.
Conclusion: The mutant strains producing a low polydisperse, as well as low Mw of HA with high titer might be regarded as potential industrial strains for HA production after further safety investigations.

References
1. Huang WC, Chen SJ, Chen TL. Modeling the microbial production of hyaluronic acid. Journal of the chinese institute of chemical engineers 2007; 38(3-4): 355-359. [DOI:10.1016/j.jcice.2007.02.004]
3. Kogan G, Šoltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology letters 2007; 29(1): 17-25. [DOI:10.1007/s10529-006-9219-z]
5. Shiedlin A, Bigelow R, Christopher W, Arbabi S, Yang L, Maier RV, Wainwright N, Childs A, Miller RJ. Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules 2004; 5(6): 2122-2127. [DOI:10.1021/bm0498427]
7. Boeriu CG, Springer J, Kooy FK, van den Broek LA, Eggink G. Production methods for hyaluronan. International journal of carbohydrate chemistry 2013; 2013: 1-14. [DOI:10.1155/2013/624967]
9. Borzacchiello A, Russo L, Malle BM, Schwach-Abdellaoui K, Ambrosio L. Hyaluronic acid based hydrogels for regenerative medicine applications. BioMed research international 2015; 2015: 871218. [DOI:10.1155/2015/871218]
11. Voigt J, Driver VR. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: A systematic review and meta‐analysis of randomized controlled trials. Wound repair and regeneration 2012; 20(3): 317-331. [DOI:10.1111/j.1524-475X.2012.00777.x]
13. Chong BF, Blank LM, Mclaughlin R, Nielsen LK. Microbial hyaluronic acid production. Applied microbiology and biotechnology 2005; 66(4): 341-351. [DOI:10.1007/s00253-004-1774-4]
15. Albertí S, Ashbaugh CD, Wessels MR. Structure of the has operon promoter and regulation of hyaluronic acid capsule expression in group A Streptococcus. Molecular microbiology 1998; 28(2): 343-353. [DOI:10.1046/j.1365-2958.1998.00800.x]
17. Tlustá M, Krahulec J, Pepeliaev S, Franke L, Černý Z, Jílková J. Production of hyaluronic acid by mutant strains of Group C Streptococcus. Molecular biotechnology 2013; 54(3): 747-755. [DOI:10.1007/s12033-012-9622-8]
19. Liu L, Liu Y, Li J, Du G, Chen J. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb cell fact 2011; 10(1): 1-9. [DOI:10.1186/1475-2859-10-99]
21. Liu L, Yang HQ, Zhang DX, Du GC, Chen J, Wang M, Sun J. Enhancement of hyaluronic acid production by batch culture of Streptococcus zooepidemicus via the addition of n-dodecane as an oxygen vector. Journal of microbiology and biotechnology 2009; 19(6): 596-603. [DOI:10.4014/jmb.0807.440]
23. Reddy KJ, Karunakaran K, Rao K. Enhanced hyaluronic acid production by a mutant strain, 3523-7 of Streptococcus zooepidemicus. Current trends in biotechnology and pharmacy 2011; 5(4): 1473-1479.
24. Khani F, Keramati M, Kazemi B, Amini Tehrani Z, Shahcheraghi F. Optimization of pH and glucose concentration of culture media for enhancement of hyaluronic acid production by Streptococcus equisimilis group C and G. New cellularand molecular biotechnology journal 2020; 10(39): 29-38.
25. Hollaender A, De Serres FJ. Chemical Mutagens: Principles and Methods for Their Detection. Germany: Springer Science and Business Media, 2012.
26. Keramati M, Roohvand F, Aslani MM, Khatami S, Aghasadeghi M, Sadat M, Memarnejadian A, Motevalli F. Screening, cloning and expression of active streptokinase from an Iranian isolate of S. equisimilis group C in E. coli. Iranian journal of basic medical sciences 2013; 16(4): 620.
27. Lu J, Zhu Y, Sun H, Liang S, Leng F, Li H. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R 42 derived from heterologous expression of bacterial haemoglobin and mutant selection. Letters in applied microbiology 2016; 62(4): 316-322. [DOI:10.1111/lam.12546]
29. Feng JC, Zhang RH. Selection of a mutant strain Streptococcus equi SH-109 and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Proceedings of the advanced materials research; 2014. 915-916: 909-912. [DOI:10.4028/www.scientific.net/AMR.915-916.909]
31. Patil KP, Kamalja KK, Chaudhari BL. Optimization of medium components for hyaluronic acid production by Streptococcus zooepidemicus MTCC 3523 using a statistical approach. Carbohydrate polymers 2011; 86(4): 1573-1577. [DOI:10.1016/j.carbpol.2011.06.065]
33. Liu J, Wang Y, Li Z, Ren Y, Zhao Y, Zhao G. Efficient production of high-molecular-weight hyaluronic acid with a two-stage fermentation. RSC advances 2018; 8(63): 36167-36171. [DOI:10.1039/C8RA07349J]
35. Johns MR, Goh LT, Oeggerli A. Effect of pH, agitation and aeration on hyaluronic acid production byStreptococcus zooepidemicus. Biotechnology letters 1994; 16(5): 507-512. [DOI:10.1007/BF01023334]
37. Vázquez JA, Montemayor MI, Fraguas J, Murado MA. Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microbial cell factories 2010; 9(1): 46. [DOI:10.1186/1475-2859-9-46]
39. Cesaretti M, Luppi E, Maccari F, Volpi N. A 96-well assay for uronic acid carbazole reaction. Carbohydrate polymers 2003; 54(1): 59-61. [DOI:10.1016/S0144-8617(03)00144-9]
41. Hamad G, Taha T, Hafez E, El Sohaimy S. Physicochemical, molecular and functional characteristics of hyaluronic acid as a functional food. American journal of food technology 2017; 12(2): 72-85. [DOI:10.3923/ajft.2017.72.85]
43. Bhilocha S, Amin R, Pandya M, Yuan H, Tank M, LoBello J, Shytuhina A, Wang W, Wisniewski HG, De La Motte C. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5-to 500-kDa hyaluronan. Analytical biochemistry 2011; 417(1): 41-49. [DOI:10.1016/j.ab.2011.05.026]
45. Lee HG, Cowman MK. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Analytical biochemistry 1994; 219(2): 278-287. [DOI:10.1006/abio.1994.1267]
47. MacLennan A. The production of capsules, hyaluronic acid and hyaluronidase by group A and group C streptococci. Microbiology 1956; 14(1): 134-142. [DOI:10.1099/00221287-14-1-134]
49. Chen YH, Li J, Liu L, Liu HZ, Wang Q. Optimization of flask culture medium and conditions for hyaluronic acid production by a streptococcus equisimilis mutant nc2168. Brazilian journal of microbiology 2012; 43(4): 1553-1561. [DOI:10.1590/S1517-83822012000400040]
51. Reddy KJ, Karunakaran K. Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7. Journal of bioScience and biotechnology 2013; 2(3).
52. Pires AMB, Santana MHA. Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid. Applied biochemistry and biotechnology 2010; 162(6): 1751-1761. [DOI:10.1007/s12010-010-8956-6]
54. Amirsadeghi A, Vasheghani FE, Shahhosseini S. Optimization of culture media for microbial Hyaluronic acid production in a batch system 2009; 28(1): 1-8.
55. Schiraldi C, La Gatta A, De Rosa M. Biotechnological Production and Application of Hyaluronan: INTECH Open Access Publisher, 2010: 387-414. [DOI:10.5772/10271]
57. Don MM, Shoparwe NF. Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochemical engineering journal 2010; 49(1): 95-103. [DOI:10.1016/j.bej.2009.12.001]
59. Maharjan AS, Pilling D, Gomer RH. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PloS one 2011; 6(10): e26078. [DOI:10.1371/journal.pone.0026078]
61. Marcellin E, Steen JA, Nielsen LK. Insight into hyaluronic acid molecular weight control. Applied microbiology and biotechnology 2014; 98(16): 6947-6956. [DOI:10.1007/s00253-014-5853-x]
63. Price RD, Myers S, Leigh IM, Navsaria HA. The role of hyaluronic acid in wound healing. American journal of clinical dermatology 2005; 6(6): 393-402. [DOI:10.2165/00128071-200506060-00006]
65. Ghazi K, Deng Pichon U, Warnet JM, Rat P. Hyaluronan fragments improve wound healing on in vitro cutaneous model through P2X7 purinoreceptor basal activation: role of molecular weight. PloS one 2012; 7(11): e48351. [DOI:10.1371/journal.pone.0048351]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb