Volume 26, Issue 5 (9-2022)                   IBJ 2022, 26(5): 350-356 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimi A, Sepehr A, Ajdarkosh H, Aghamohamad S, Talebi M, Rohani* M et al . Dynamic Population of Gut Microbiota as an Indicator of Inflammatory Bowel Disease. IBJ 2022; 26 (5) :350-356
URL: http://ibj.pasteur.ac.ir/article-1-3772-en.html
Abstract:  
Background: Inflammatory bowel disease is a chronic inflammatory disease of the gastrointestinal tract. The gut microbiota is an important factor in the pathogenesis of inflammatory bowel disease (IBD). Due to a link between the gut microbiota and IBD, studying microbiota changes using an accurate, sensitive and rapid method for detection of the disease seems necessary. This study aimed to compare the composition of gut microbiota in three groups of people, including IBD patients, cured Inflammatory bowel disease (CIBD), and healthy groups.
Methods: For this study, 45 stool samples (15 from each group) were collected. Using real-time PCR, the abundance of 11 bacterial 16S rRNA gene sequences was examined.
Results: In the IBD group, the number of three bacterial phyla, including Firmicutes, Actinobacteria, and Bacteroidetes, decreased (p < 0.01, p < 0.01, and p < 0.001, respectively), while the population of γ-Proteobacteria increased significantly (p < 0.0001). In the CIBD group, the number of Actinobacteria enhanced (p < 0.01), but that of Bacteroidetes and Firmicutes decreased (p < 0.01, and p < 0.05, respectively).
Conclusion: Findings of this study indicate that decrease in Firmicutes and increase in γ-Proteobacteria could be used as an indicator of IBD instead of employing invasive and costly detection methods such as colonoscopy and other tests.

References
1. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall B, Mallick H, McIver LJ, Sauk JS, Wilson RG, Stevens BW, Scott JM, Pierce K, Deik AA, Bullock K, Imhann F, Porter JA, Zhernakova A, Fu J, Weersma RK, Wijmenga C, Clish CB, Vlamakis H, Huttenhower C, Xavier RJ. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nature microbiology 2019; 4: 293-305. [DOI:10.1038/s41564-018-0306-4]
2. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, Spekhorst LM, Alberts R, Franke L, van Dullemen MH, Ter Steege RWF, Huttenhower C, Dijkstra G, Xavier RJ, Festen EAM, Wijmenga C, Zhernakova A, Weersma RK. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018; 67(1): 108-119. [DOI:10.1136/gutjnl-2016-312135]
3. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nature reviews. Gastroenterology and hepatology 2015; 12(4): 205-217. [DOI:10.1038/nrgastro.2015.34]
4. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environmental microbiology 2014; 16(9): 2891-2904. [DOI:10.1111/1462-2920.12238]
5. Thaiss CA,Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014; 159(3): 514-529. [DOI:10.1016/j.cell.2014.09.048]
6. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-563. [DOI:10.1038/nature12820]
7. McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Alimentary pharmacology and therapeutics 2018; 47(1): 26-42. [DOI:10.1111/apt.14384]
8. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: A Common Factor in Human Diseases. BioMed research international 2017; 2017: 9351507. [DOI:10.1155/2017/9351507]
9. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical journal of gastroenterology 2018; 11(1): 1-10. [DOI:10.1007/s12328-017-0813-5]
10. Sun Y, Li L, Xia Y, Li W, Wang K, Wang L, Miao Y, and Ma S. The gut microbiota heterogeneity and assembly changes associated with the IBD. Scientific reports 2019; 9(1): 440. [DOI:10.1038/s41598-018-37143-z]
11. Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, Ananthakrishnan AN, Andrews E , Barron G, Lake K, Prasad M, Sauk J, Stevens B, Wilson RG, Braun J, Denson LA, Kugathasan S, McGovern DPB, Vlamakis H, Xavier RJ, Huttenhower C. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nature microbiology 2018; 3(3): 337-346. [DOI:10.1038/s41564-017-0089-z]
12. Lupp C, Robertson M L, Wickham M E, Sekirov I, Champion O L, Gaynor EC,Finlay BB. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell host and microbe 2007; 2(2) :119-129. [DOI:10.1016/j.chom.2007.06.010]
13. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedeker EC, Harpaz N, Pace NR, Li E. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflammatory bowel diseases 2011; 17(1): 179-184. [DOI:10.1002/ibd.21339]
14. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146: 1489-1499. [DOI:10.1053/j.gastro.2014.02.009]
15. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Treuren WV, Ren B, Schwager E, Knights D, Jin Song S, Yassour M, Morgan XC, Kostic AD, Luo C, González A, McDonald D, Haberman Y, Walter T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ. The treatment-naive microbiome in new-onset Crohn's disease. Cell host and microbe 2014; 15(3): 382-392. [DOI:10.1016/j.chom.2014.02.005]
16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
17. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004; 53: 685-693. [DOI:10.1136/gut.2003.025403]
18. Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, Kurilshikov A, Bonder MJ, Jiang X, Tigchelaar EF, Dekens J, Peters V, Voskuil MD, Visschedijk MC, van Dullemen HM, Keszthelyi D , Swertz MA, Franke L, Alberts R, Festen EAM, Dijkstra G , Masclee AAM, Hofker MH, Xavier RJ, Alm EJ, Fu J, Wijmenga C, Jonkers DMAE, Zhernakova A, Weersma RK. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Science translational medicine 2018; 10(472): 8914. [DOI:10.1126/scitranslmed.aap8914]
19. Kedia S, Shankar Ghosh T, Jain S, Desigamani A, Kumar A. Gut microbiome diversity in acute severe colitis is distinct from mild to moderate ulcerative colitis. Journal of gastroenterology and hepatology 2021; 36: 731-739. [DOI:10.1111/jgh.15232]
20. Chou Y, Ho P, Chen W, Wu Sh, Pan M. Lactobacillus fermentum V3 ameliorates colitis-associated tumorigenesis by modulating the gut microbiome. American journal of cancer research. 2020; 10(4): 1170-1181.
21. Zhou Y, Xu H, Xu J, Guo X, Zhao HF. prausnitzii and its supernatant increase SCFAs‑producing bacteria to restore gut dysbiosis in TNBS‑induced colitis. AMB express 2021; 11(1): 33. [DOI:10.1186/s13568-021-01197-6]
22. Shen Zh, Zhu C, Quan Y, Yang J, Yuan W. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. Journal of gastroenterology and hepatology 2018; 33(10): 1751-1760. [DOI:10.1111/jgh.14144]
23. Méndez-Salazar EO, Ortiz-López MG, Granados-Silvestre MA, Palacios-González B, Menjivar M. Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children. Frontiers in microbiology 2018; 9: 2494. [DOI:10.3389/fmicb.2018.02494]
24. Baldelli V, Scaldaferri F, Putignani L, Chierico FD. The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 2021; 9: 697. [DOI:10.3390/microorganisms9040697]
25. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, D'Amato M, Bonfiglio F, McDonald D, Gonzalez A, McClure EE, Dunklebarger MF, Knight R, Jansson JK. Dynamics of the human gut microbiome in inflammatory bowel disease. Nature microbiology 2017; 2: 17004. [DOI:10.1038/nmicrobiol.2017.4]
26. Bartosch S, Fite A, Macfarlane G, McMurdo ME. Characterization of Bacterial Communities in Feces from Healthy Elderly Volunteers and Hospitalized Elderly Patients by Using Real-Time PCR and Effects of Antibiotic Treatment on the Fecal Microbiota. Applied and environmental microbiology 2004; 70(6): 3575-3581. [DOI:10.1128/AEM.70.6.3575-3581.2004]
27. Haarman M, Knol J. Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula. Applied and environmental microbiology 2006; 72(4): 2359-2365. [DOI:10.1128/AEM.72.4.2359-2365.2006]
28. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Abu Al-Soud W, Sørensen SJ, Hansen LH, Jakobsen M. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS one 2010; 5(2): e9085. [DOI:10.1371/journal.pone.0009085]
29. Jia W, Whitehead RN, Griffiths L, Dawson C, Waring RH, Ramsden DB, Hunter JO, Cole JA. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS microbiology letters 2010; 310: 138-144. [DOI:10.1111/j.1574-6968.2010.02057.x]
30. De Gregoris TB, Aldred N, Clare AS, Burgess JG. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. Journal of microbiological methods 2011; 86: 351-356. [DOI:10.1016/j.mimet.2011.06.010]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb