Volume 26, Issue 5 (10-2022)                   IBJ 2022, 26(5): 398-405 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini Nami A, Kabiri M, Zeinali S. Reporting Two Novel Mutations in Two Iranian Families with Cystic Fibrosis, Molecular and Bioinformatic Analysis. IBJ 2022; 26 (5) :398-405
URL: http://ibj.pasteur.ac.ir/article-1-3713-en.html
Abstract:  
Background: Cystic fibrosis is the most common heredity disease among the Caucasian population. More than 350 known pathogenic variations in the CFTR gene (NM_000492.4) cause CF. Herein, we report the outcome of our investigation in two unrelated Iranian families with CF patients.
Methods: We conducted phenotypic examination, segregation, linkage analysis, and CFTR gene sequencing to define causative mutations.
Results: We found two novel mutations in the present study. The first one was a deletion causing frameshift, c.299delT p.(Leu100Profs*7), and the second one was a missense mutation, c.1857G>T at nucleotide binding domain 1 of the CFTR protein. Haplotype segregation data supported our new mutation findings.
Conclusion: Findings of this study expand the spectrum of CFTR pathogenic variations and can improve prenatal diagnosis and genetic counseling for CF.
Type of Study: Full Length | Subject: Molecular Genetics & Genomics

References
1. Ratjen F, Bell SC, Rowe SM, Goss CH, Quittner AL, Bush A. Cystic fibrosis. Nature reviews. Disease primers 2015; 1: 15010. [DOI:10.1038/nrdp.2015.10]
2. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature reviews. Genetics 2015; 16(1): 45-56. [DOI:10.1038/nrg3849]
3. Allan KM, Farrow N, Donnelley M, Jaffe A, Waters SA. Treatment of Cystic Fibrosis: from gene- to cell-based therapies. Frontiers in pharmacology 2021; 12: 639475. [DOI:10.3389/fphar.2021.639475]
4. De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta paediatr 2020; 109(5): 893-899. [DOI:10.1111/apa.15155]
5. Scotet V, L'Hostis C, Férec C. The Changing epidemiology of Cystic Fibrosis: Incidence, survival and impact of the CFTR gene discovery. Genes (Basel) 2020; 11(6): 589. [DOI:10.3390/genes11060589]
6. Zhao S, Cheng X, Wen W, Qiu G, Zhang TJ, Wu Z, Wu N. Advances in clinical genetics and genomics. Intelligent medicine 2021; 1(3): 128-133. [DOI:10.1016/j.imed.2021.03.005]
7. Ajallouyan M, Radfar S, Nouhi S, Tavallaie SA, Amirsalari S, Yousefi J, Hasanali Fard M. Consanguinity among parents of Iranian deaf children. Iranian Red Crescent medical journal 2016; 18(11): e22038. [DOI:10.5812/ircmj.22038]
8. Rahimi Z. Genetic epidemiology, hematological and clinical features of hemoglobinopathies in Iran. BioMed research international 2013; 2013: 803487. [DOI:10.1155/2013/803487]
9. Mehrjoo Z, Fattahi Z, Beheshtian M, Mohseni M, Poustchi H, Ardalani F, Jalalvand K, Arzhangi S, Mohammadi Z, Khoshbakht S, Najafi F, Nikuei P, Haddadi M, Zohrehvand E, Oladnabi M, Mohammadzadeh A, Jafari MH, Akhtarkhavari T, Gooshki ES, Haghdoost A, Najafipour R, Niestroj LM, Helwing B, Gossmann Y, Toliat MR, Malekzadeh R, Nürnberg P, Kahrizi K, Najmabadi H, Nothnagel M. Distinct genetic variation and heterogeneity of the Iranian population. PLoS genetics 2019; 15(9): e1008385. [DOI:10.1371/journal.pgen.1008385]
10. Behjati F, Ghasemi Firouzabadi S, Kahrizi K, Kariminejad R, Bagherizadeh I, Ansari J, Fallah M, Mojtahedi F, Darvish H, Bahrami Monajemi G, Abedini SS, Jamali P, Mojahedi F, Zadeh-Vakili A, Najmabadi H. Chromosome abnormality rate among Iranian patients with idiopathic mental retardation from consanguineous marriages. Archives of medical science : AMS 2011; 7(2): 321-325. [DOI:10.5114/aoms.2011.22085]
11. Asadi-Pooya AA, Doroudchi M. Thalassemia major and consanguinity in Shiraz city, Iran. Turkish journal of haematology 2004; 21(3): 127-130.
12. Elahi E, Khodadad A, Kupershmidt I, Ghasemi F, Alinasab B, Naghizadeh R, Eason RG, Amini M, Esmaili M, Esmaeili Dooki MR, Sanati MH, Davis RW, Ronaghi M, Thorstenson YR. A haplotype framework for cystic fibrosis mutations in Iran. The Journal of molecular diagnostics 2006; 8(1): 119-127. [DOI:10.2353/jmoldx.2006.050063]
13. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research 1988; 16(3): 1215. [DOI:10.1093/nar/16.3.1215]
14. Zafarghandi Motlagh F, Fallah MS, Bagherian H, Shirzadeh T, Ghasri S, Dabbagh S, Jamali M, Salehi Z, Abiri M, Zeinali S. Molecular genetic diagnosis of Glanzmann syndrome in Iranian population; reporting novel and recurrent mutations. Orphanet journal of rare diseases 2019; 14(1): 87. [DOI:10.1186/s13023-019-1042-4]
15. Schwarz JM, Cooper DN, Schuelke M, Seelow D. Mutation taster2: mutation prediction for the deep-sequencing age. Nature methods 2014; 11(4): 361-362. [DOI:10.1038/nmeth.2890]
16. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nature methods 2010; 7(4): 248-249. [DOI:10.1038/nmeth0410-248]
17. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics 2014; 46(3): 310-315. [DOI:10.1038/ng.2892]
18. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human mutation 2013; 34(1): 57-65. [DOI:10.1002/humu.22225]
19. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic acids research 2012; 40(W1): W452-W457. [DOI:10.1093/nar/gks539]
20. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015; 31(16): 2745-2747. [DOI:10.1093/bioinformatics/btv195]
21. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genetics in medicine 2015; 17(5): 405-424. [DOI:10.1038/gim.2015.30]
22. Den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T, Antonarakis SE, Taschner PE. HGVS Recommendations for the description of sequence variants: 2016 Update. Human mutation 2016; 37(6): 564-569. [DOI:10.1002/humu.22981]
23. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research 2018; 46(W1): W296-w303. [DOI:10.1093/nar/gky427]
24. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research 2014; 42(Web Server issue): W252-258. [DOI:10.1093/nar/gku340]
25. Fanen P, Ghanem N, Vidaud M, Besmond C, Martin J, Costes B, Plassa F, Goossens M. Molecular characterization of cystic fibrosis: 16 novel mutations identified by analysis of the whole cystic fibrosis conductance transmembrane regulator (CFTR) coding regions and splice site junctions. Genomics 1992; 13(3): 770-776. [DOI:10.1016/0888-7543(92)90152-I]
26. Sharma H, Mavuduru RS, Singh SK, Prasad R. Heterogeneous spectrum of mutations in CFTR gene from Indian patients with congenital absence of the vas deferens and their association with cystic fibrosis genetic modifiers. Molecular human reproduction 2014; 20(9): 827-835. [DOI:10.1093/molehr/gau047]
27. Kerem B, Kerem E. The Molecular basis for disease variability in cystic fibrosis. European journal of human genetics 1996; 4(2): 65-73. [DOI:10.1159/000472174]
28. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nature reviews molecular cell biology 2015; 16(11): 665-677. [DOI:10.1038/nrm4063]
29. Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, Hong JS, Pollard HB, Guggino WB, Balch WE, Skach WR, Cutting GR, Frizzell RA, Sheppard DN, Cyr DM, Sorscher EJ, Brodsky JL, Lukacs GL. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Molecular biology of the cell 2016; 27(3): 424-433. [DOI:10.1091/mbc.e14-04-0935]
30. el-Harith EA, Dörk T, Stuhrmann M, Abu-Srair H, al-Shahri A, Keller KM, Lentze MJ, Schmidtke J. Novel and characteristic CFTR mutations in Saudi Arab children with severe cystic fibrosis. Journal of medical genetics 1997; 34(12): 996-999. [DOI:10.1136/jmg.34.12.996]
31. Esmaeili Dooki MR, Tabaripour R, Rahimi R, Akhavan-Niaki H. Mutation and new polymorphisms insight in introns 11 to 14a of CFTR gene of northern Iranian cystic fibrosis patients. Gene 2015; 564(2): 193-196. [DOI:10.1016/j.gene.2015.03.056]
32. Petrova NV, Kashirskaya NY, Vasilyeva TA, Kondratyeva EI, Zhekaite EK, Voronkova AY, Sherman VD, Galkina VA, Ginter EK, Kutsev SI, Marakhonov AV, Zinchenko RA. Analysis of CFTR mutation spectrum in ethnic russian cystic fibrosis patients. Genes (Basel) 2020; 11(5):554. [DOI:10.3390/genes11050554]
33. Ivanov M, Matsvay A, Glazova O, Krasovskiy S, Usacheva M, Amelina E, Chernyak A, Ivanov M, Musienko S, Prodanov T, Kovalenko S, Baranova A, Khafizov K. Targeted sequencing reveals complex, phenotype-correlated genotypes in cystic fibrosis. BMC medical genomics 2018; 11(Suppl 1): 13. [DOI:10.1186/s12920-018-0328-z]
34. Eskandarani HA. Cystic fibrosis transmembrane regulator gene mutations in Bahrain. Journal of tropical pediatrics 2002; 48(6): 348-350. [DOI:10.1093/tropej/48.6.348]
35. Onay T, Topaloglu O, Zielenski J, Gokgoz N, Kayserili H, Camcioglu Y, Cokugras H, Akcakaya N, Apak M, Tsui LC, Kirdar B. Analysis of the CFTR gene in Turkish cystic fibrosis patients: identification of three novel mutations (3172delAC, P1013L and M1028I). Human genetics 1998; 102(2): 224-230. [DOI:10.1007/s004390050683]
36. Onay T, Zielenski J, Topaloglu O, Gokgoz N, Kayserili H, Apak MY, Camcioglu Y, Cokugras H, Akcakaya N, Tsui LC, Kirdar B. Cystic fibrosis mutations and associated haplotypes in Turkish cystic fibrosis patients. Human biology 2001; 73(2): 191-203. [DOI:10.1353/hub.2001.0022]
37. Farra C, Menassa R, Awwad J, Morel Y, Salameh P, Yazbeck N, Majdalani M, Wakim R, Yunis K, Mroueh S, Cabet F. Mutational spectrum of cystic fibrosis in the Lebanese population. Journal of cystic fibrosis 2010; 9(6): 406-410. [DOI:10.1016/j.jcf.2010.08.001]
38. Banjar HH, Tuleimat L, El Seoudi AAA, Mogarri I, Alhaider S, Nizami IY, AlMaghamsi T, Alkaf SA, Moghrabi N. Genotype patterns for mutations of the cystic fibrosis transmembrane conductance regulator gene: a retrospective descriptive study from Saudi Arabia. Annals of Saudi medicine 2020; 40(1): 15-24. [DOI:10.5144/0256-4947.2020.15]
39. Liu F, Zhang Z, Csanády L, Gadsby DC, Chen J. Molecular structure of the human CFTR ion channel. Cell 2017; 169(1): 85-95.e88. [DOI:10.1016/j.cell.2017.02.024]
40. Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. The EMBO journal 2004; 23(2): 282-293. [DOI:10.1038/sj.emboj.7600040]
41. Clancy JP, Hong JS, Bebök Z, King SA, Demolombe S, Bedwell DM, Sorscher EJ. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability. Biochemistry 1998; 37(43): 15222-15230 . [DOI:10.1021/bi980436f]
42. Kloch M, Milewski M, Nurowska E, Dworakowska B, Cutting GR, Dołowy K. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing. Cellular physiology and biochemistry 2010; 25(2-3): 169-180. [DOI:10.1159/000276549]
43. Dörk T, Mekus F, Schmidt K, Bosshammer J, Fislage R, Heuer T, Dziadek V, Neumann T, Kälin N, Wulbrand U. Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients. Human genetics 1994; 94(5): 533-542. [DOI:10.1007/BF00211022]
44. Pasyk EA, Morin XK, Zeman P, Garami E, Galley K, Huan LJ, Wang Y, Bear CE. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. The Journal of biological chemistry 1998; 273(48): 31759-31764. [DOI:10.1074/jbc.273.48.31759]
45. Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H. Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator. Human molecular genetics 1998; 7(11): 1761-1769. [DOI:10.1093/hmg/7.11.1761]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb