Volume 26, Issue 5 (9-2022)                   IBJ 2022, 26(5): 380-388 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khamesi S M, Salehi Barough M, Zargan J, Shayesteh M, Banaee N, Haji Noormohammadi A, et al . Evaluation of Anticancer and Cytotoxic Effects of Genistein on PC3 Prostate Cell Line under Three-Dimensional Culture Medium. IBJ 2022; 26 (5) :380-388
URL: http://ibj.pasteur.ac.ir/article-1-3711-en.html
Abstract:  
Background: Prostate cancer is a major cause of disease and mortality among men. Genistein (GNT) is an isoflavone found naturally in legumes. Isoflavones, a subset of phytoestrogens, are structurally similar to mammalian estrogens. This study aimed to evaluate the anticancer and cytotoxic effects of GNT on PC3 cell line under three dimensional (3D) culture medium.
Methods: The 3D culture was created by encapsulating the PC3 cells in alginate hydrogel. MTT assay, neutral red uptake, comet assay, and cytochrome C assay were used to study the anticancer and cytotoxic effects of GNT at 120, 240, and 480 μM concentrations. Also, nitric oxide (NO), catalase, and glutathione assay levels were determined to evaluate the effect of GNT on the cellular stress. The culture medium was used as the negative control.
Results: GNT reduced the production of cellular NO and increased the production of catalase and glutathione, confirming the results of the NO test. Evaluation of the toxicity effect of GNT at the concentrations of 120, 240, and 480 μM using comet assay showed that this chemical agent induces apoptosis in PC3 cells in a dose-dependent manner. As the level of cytochrome C in PC3 cells treated with different concentrations of GNT was not significantly different from that of the control, GNT could induce apoptosis in PC3 cells through the non-mitochondrial pathway. 
Conclusion: The findings of this study disclose that the anticancer effect of GNT on PC3 cells under 3D culture conditions could increase the effectiveness of treatment. Also, the cell survival rate is dependent on GNT concentration.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Satpathy M. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA oncology 2017; 3(4): 524-548.‌
2. Noori-Daloii MR, Arabpour M. Genetic and nutrition interaction and its association with the risk of cancer. Medical sciences 2018; 28(4): 259-269.‌ [DOI:10.29252/iau.28.4.259]
3. Noori-Daloii MR, Ebadi N. Pharmacogenomics and cancer stem cells. Medical sciences 2015; 25(1): 1-15.‌
4. Sadeghi-Gandomani H, Yousefi M, Rahimi S, Yousefi S, Karimi-Rozveh A, Hosseini S, Salehiniya H. The incidence, risk factors, and knowledge about the prostate cancer through worldwide and Iran. World cancer research journal 2017; 4(4): e972.
5. Askari F, Parizi MK, Rashidkhani B. Dietary patterns and prostate cancer: a case-control study. Iranian journal of nutrition sciences and food technology 2013; 8(3): 17-25.
6. Hosseini M, Jahani Y, Mahmoudi M, Eshraghian MR, Yahyapour Y, Keshtkar AA. The assessment of risk factors for prostate cancer in Mazandaran province, Iran. Scientific journal of Gorgan university of medical sciences 2008; 10(3): 58-64.
7. Knight DC, Eden JA. A review of the clinical effects of phytoestrogens. Obstetrics and gynecology 1996; 87(5): 897-904.‌
8. Prakash D, Upadhyay G, Singh BN, Singh HB. Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food chemistry 2007; 104(2): 783-790. [DOI:10.1016/j.foodchem.2006.12.029]
9. Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA. Calina D. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxidative medicine and cellular longevity 2021; 2021: 3268136. [DOI:10.1155/2021/3268136]
10. Herman C, Adlercreutz T, Goldin BR, Gorbach SL, Höckerstedt KA, Watanab, Hämäläinen EK, Markkanen MH, Mäkelä T H, Wähälä KT, Adlercreutz T. Soybean phytoestrogen intake and cancer risk. The Journal of nutrition 1995: 125(suppl_3): 757S-770S.‌
11. Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 1995; 375(6532): 577-581.‌ [DOI:10.1038/375577a0]
12. Mahmoud AM, Yang W, Bosland MC. Soy isoflavones and prostate cancer: a review of molecular mechanisms. The Journal of steroid biochemistry and molecular biology 2014; 140: 116-132.‌ [DOI:10.1016/j.jsbmb.2013.12.010]
13. Touny LHE, Banerjee PP. Identification of both Myt‐1 and Wee‐1 as necessary mediators of the p21‐independent inactivation of the cdc‐2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein. The Prostate 2006; 66(14): 1542-1555. [DOI:10.1002/pros.20495]
14. Mahmoud AM, Zhu T, Parray A, Siddique HR, Yang W, Saleem M, Bosland MC. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor. PloS one 2013; 8(10): e78479. [DOI:10.1371/journal.pone.0078479]
15. Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y. Effect of genistein on topoisomerase activity and on the growth of [Val 12] Ha-ras-transformed NIH 3T3 cells. Biochemical and biophysical research communications 1988; 157(1): 183-189.‌ [DOI:10.1016/S0006-291X(88)80030-5]
16. Adlercreutz H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scandinavian journal of clinical and laboratory investigation 1990; 50(sup201): 3-23.‌ [DOI:10.1080/00365519009085798]
17. Huang J, Nasr M, Kim Y, Matthews HR. Genistein inhibits protein histidine kinase. Journal of biological chemistry 1992; 267(22): 15511-15515.‌ [DOI:10.1016/S0021-9258(19)49564-1]
18. Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug discovery today 2013; 18(5-6): 240-249.‌ [DOI:10.1016/j.drudis.2012.10.003]
19. Baharvand H, Hashemi SM, Ashtiani SK, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. International journal of developmental biology 2004; 50(7): 645-652. [DOI:10.1387/ijdb.052072hb]
20. Białkowska K, Komorowski P, Bryszewska M, Miłowska K. Spheroids as a type of three-dimensional cell culturesexamples of methods of preparation and the most important application. International journal of molecular sciences 2020; 21(17): 6225. [DOI:10.3390/ijms21176225]
21. Kamran MR, Zargan J, Hajinoormohamadi A. The comparative cytotoxic effects of Apis mellifera crude venom on MCF-7 breast cancer cell line in 2D and 3D cell cultures. International journal of peptide research and therapeutics 2020; 26(4): 1819-1828.‌ [DOI:10.1007/s10989-019-09979-0]
22. Wrzesinski K, Magnone MC, Hansen LV, Kruse ME, Bergauer T, Bobadilla M, Gubler M, Mizrahi J, Zhang K, Joensen KE. HepG2/C3A 3D spheroids exhibit stable physiological functionality for at least 24 days after recovering from trypsinisation. Toxicology research 2013; 2(3): 163-172. [DOI:10.1039/c3tx20086h]
23. Mosmann T. Rapid Colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of immunological methods 1983; 65: 55-63. [DOI:10.1016/0022-1759(83)90303-4]
24. Wrzesinski K, Fey SJ. After trypsinisation, 3D spheroids of C3A hepatocytes need 18 days to re-establish similar levels of key physiological functions to those seen in the liver. Toxicology research 2013; 2(2): 123-135. [DOI:10.1039/C2TX20060K]
25. Shafiee G, Saidijam M, Tayebinia H, Khodadadi I. Beneficial effects of genistein in suppression of proliferation, inhibition of metastasis, and induction of apoptosis in PC3 prostate cancer cells. Archives of physiology and biochemistry 2020; 128(3): 694-702. [DOI:10.1080/13813455.2020.1717541]
26. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA: a cancer journal for clinicians 2017; 67 (1): 7-30. [DOI:10.3322/caac.21387]
27. Choi EJ, Jung JY, Kim GH. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERalpha expression and induction of apoptosis. Experimental and therapeutic medicine 2014; 8 (2): 454-458. [DOI:10.3892/etm.2014.1771]
28. Shafiee G, Saidijam M, Tavilani H, Ghasemkhani N, Khodadadi I. Genistein induces apoptosis and inhibits proliferation of HT29 colon cancer cells. International journal of molecular and cellular medicine 2016; 5(3): 178-191.
29. Zhang Z, Zhang Z, Jin F, Lian X, Li M, Wang G, Lan B, He H, Liu GD, Wu Y, Sun J, Xu CX, Yang Z. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer. Scientific reports 2018; 8 (1): 328. [DOI:10.1038/s41598-017-18755-3]
30. Huang W, Wan C, Luo Q, Huang Z, Luo Q. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. International journal of molecular sciences 2014; 15 (3): 3432-3443. [DOI:10.3390/ijms15033432]
31. Hsu A, Bray TM, Helferich WG, Doerge DR, Ho E. Differential effects of wholesoy extract and soy isoflavones on apoptosis in prostate cancer cells. Experimental biology and medicine 2010; 235 (1): 90-97. [DOI:10.1258/ebm.2009.009128]
32. Su X, Chen L, Han S, Niu G, Ren J, Ke C. Preparation and characterization of a novel triple composite scaffold containing silk fiborin, chitosan, and alginate for 3D culture of colonic carcinoma cells in vitro. Medical science monitor 2020; 26: e922935. [DOI:10.12659/MSM.922935]
33. Davis JN, Singh B, Bhuiyan M, Sarkar FH. Genistein‐induced upregulation of p21 WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutrition and cancer 1998; 32(3): 123-131. [DOI:10.1080/01635589809514730]
34. Sanaei M, Kavoosi F, Valiani A, Ghobadifar MA. Effect of genistein on apoptosis and proliferation of hepatocellular carcinoma Hepa1-6 cell line. International journal of preventive medicine 2018; 9: 12. [DOI:10.4103/ijpvm.IJPVM_249_16]
35. Pampaloni F, Stelzer EH, Masotti A. Three-dimensional tissue models for drug discovery and toxicology. Recent patents on biotechnology 2009; 3(2): 103-117.‌ [DOI:10.2174/187220809788700201]
36. Gurski LA, Petrelli NJ, Jia X, Farach-Carson MC. 3D matrices for anti-cancer drug testing and development. Oncology issues 2010; 25(1): 20-25.‌ [DOI:10.1080/10463356.2010.11883480]
37. Fontana F, Raimondi M, Marzagalli M, Sommariva M, Gagliano N, Limonta P. Three-dimensional cell cultures as an in vitro tool for prostate cancer modeling and drug discovery. International journal of molecular sciences 2020; 21(18): 6806. [DOI:10.3390/ijms21186806]
38. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proceedings of the national academy of sciences 2002; 99(3): 1259-1263.‌ [DOI:10.1073/pnas.241655498]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb