Volume 26, Issue 5 (10-2022)                   IBJ 2022, 26(5): 389-397 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadzadeh R, Mozafari A, Shafiei E, Kaffashian M, Ahmadi I, Darvish M et al . On-Admission Anemia and Survival Rate in COVID-19 Patients. IBJ 2022; 26 (5) :389-397
URL: http://ibj.pasteur.ac.ir/article-1-3703-en.html
Background: Anemia often worsens the severity of respiratory illnesses, and few studies have so far elucidated the impact of anemia on COVID-19 infection. This study aimed to evaluate the effect of anemia at admission on the overall survival of COVID-19 patients using AFT models.
Methods: This registry-based, single-center retrospective cohort study was conducted in a university hospital in Ilam, the southwest of Iran, between March 2020 and September 2021. AFT models were applied to set the data of 2,441 COVID-19 patients. Performance of AFT models was assessed using AIC and Cox-Snell residual. On-admission anemia was defined as Hb concentration <120 g/l in men, <110 g/l in women, and <100 g/l in pregnant women.
Results: The median in-hospital survival times for anemic and non-anemic patients were 27 and 31 days, respectively. Based on the AIC and Cox-Snell residual graph, the Weibull model had the lowest AIC and it was the best fitted model to the data set among AFT models. In the adjusted model, the results of the Weibull model suggested that the anemia (adjusted TR: 1.04; 95% CI: 1.00-1.08; p = 0.03) was the accelerated factor for progression to death in COVID-19 patients. Each unit of increase in hemoglobin in COVID-19 patients enhanced the survival rate by 4%.
Conclusion: Anemia is an independent risk factor associated with the risk of mortality from COVID-19 infection. Therefore, healthcare professionals should be more sensitive to the Hb level of COVID-19 patients upon admission.
Type of Study: Research Briefs | Subject: Related Fields

1. Iftekhar EN, Priesemann V, Balling R, Bauer S, Beutels P, Valdez AC, Cuschieri S, Czypionka T, Dumpis U, Glaab E. A look into the future of the COVID-19 pandemic in Europe: an expert consultation. The lancet regional health 2021; 8: 100185. [DOI:10.1016/j.lanepe.2021.100185]
2. Razu SR, Yasmin T, Arif TB, Islam M, Islam SMS, Gesesew HA, Ward P. Challenges faced by healthcare professionals during the COVID-19 pandemic: a qualitative inquiry from Bangladesh. Frontiers in public health 2021; 9: 647315. [DOI:10.3389/fpubh.2021.647315]
3. Faghih Dinevari M, Somi MH, Sadeghi Majd E, Abbasalizad Farhangi M, Nikniaz Z. Anemia predicts poor outcomes of COVID-19 in hospitalized patients: a prospective study in Iran. BMC infectious diseases 2021; 21(1): 1-7. [DOI:10.1186/s12879-021-05868-4]
4. Chaparro CM, Suchdev PS. Anemia epidemiology, pathophysiology, and etiology in low-and middle-income countries. Annals of the new york academy of sciences 2019; 1450(1): 15-31. [DOI:10.1111/nyas.14092]
5. Han SV, Park M, Kwon YM, Yoon HJ, Chang Y, Kim H, Lim YH, Kim SG, KO A. Mild anemia and risk for all-cause, cardiovascular and cancer deaths in apparently healthy elderly Koreans. Korean journal of family medicine 2019; 40(3): 151. [DOI:10.4082/kjfm.17.0089]
6. Ren J, Wang Z, Zhang Y, Zhang P, Zhou J, Zhong W, Wang X, Gao P, Shi X, Mao C. Is Hemoglobin concentration a linear predictor of mortality in older adults from chinese longevity regions? Frontiers in public health 2021; 9: 787935. [DOI:10.3389/fpubh.2021.787935]
7. Guralnik J, Ershler W, Artz A, Lazo-Langner A, Walston J, Pahor M, Ferrucci L, Evans WJ. Unexplained anemia of aging: Etiology, health consequences, and diagnostic criteria. Journal of the American geriatrics society 2022; 70(3): 891-899. [DOI:10.1111/jgs.17565]
8. Hariyanto TI, Japar KV, Kwenandar F, Damay V, Siregar JI, Lugito NPH, Tjiang MM, Kurniawan A. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: a systematic review and meta-analysis. The American journal of emergency medicine 2021; 41: 110-119. [DOI:10.1016/j.ajem.2020.12.076]
9. Urrechaga E, Zalba S, Otamendi I, Zabalegui MA, Galbete A, Ongay E, Fernandez M, García-Erce JA. Hemoglobin and anemia in COVID19 patients. Hematology and medical oncology 2020; 5: 1-4. [DOI:10.15761/HMO.1000217]
10. Bergamaschi G, de Andreis FB, Aronico N, Lenti MV, Barteselli C, Merli S, Pellegrino I, Coppola L, Cremonte EM, Croce G. Anemia in patients with COVID-19: pathogenesis and clinical significance. Clinical and experimental medicine 2021; 21(2): 239-246. [DOI:10.1007/s10238-020-00679-4]
11. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clinics and practice 2020; 10(2): 24-30. [DOI:10.4081/cp.2020.1271]
12. Hariyanto TI, Kurniawan A. Anemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Transfusion and apheresis science 2020; 59(6): 102926. [DOI:10.1016/j.transci.2020.102926]
13. Zhou M, Qi J, Li X, Zhang Z, Yao Y, Wu D, Han Y. The proportion of patients with thrombocytopenia in three human-susceptible coronavirus infections: a systematic review and meta-analysis. British journal of haematology 2020: 189(3): 438-441. [DOI:10.1111/bjh.16655]
14. Wang L, He W, Yu X, Hu D, Bao M, Liu H, Zhou J, Jiang H. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. Journal of infection 2020; 80(6): 639-645. [DOI:10.1016/j.jinf.2020.03.019]
15. Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, Salvador D, Groothof D, Minder B, Kopp-Heim D. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. European journal of epidemiology 2020; 35(8): 763-773. [DOI:10.1007/s10654-020-00678-5]
16. Chen C, Zhou W, Fan W, Ning X, Yang S, Lei Z, Zheng C. Association of anemia and COVID-19 in hospitalized patients. Future virology 2021; 16(7): 459-466. [DOI:10.2217/fvl-2021-0044]
17. Tao Z, Xu J, Chen W, Yang Z, Xu X, Liu L, Chen R, Xie J, Liu M, Wu J. Anemia is associated with severe illness in COVID-19: a retrospective cohort study. Journal of medical virology 2021; 93(3): 1478-1488. [DOI:10.1002/jmv.26444]
18. Oh SM, Skendelas JP, Macdonald E, Bergamini M, Goel S, Choi J, Segal KR, Vivek K, Nair S, Leff J. On-admission anemia predicts mortality in COVID-19 patients: A single center, retrospective cohort study. The American journal of emergency medicine 2021; 48: 140-147. [DOI:10.1016/j.ajem.2021.03.083]
19. Schober P, Vetter TR. Survival analysis and interpretation of time-to-event data: the tortoise and the hare. Anesthesia and analgesia 2018; 127(3): 792. [DOI:10.1213/ANE.0000000000003653]
20. Rulli E, Ghilotti F, Biagioli E, Porcu L, Marabese M, D'Incalci M, Bellocco R, Torri V. Assessment of proportional hazard assumption in aggregate data: a systematic review on statistical methodology in clinical trials using time-to-event endpoint. British journal of cancer 2018; 119(12): 1456-1463. [DOI:10.1038/s41416-018-0302-8]
21. Karimi M, Shariat A. Semiparametric Accelerated Failure time model as a new approach for health science studies. Iranian journal of public health 2017; 46(11): 1594-1595.
22. Swindell WR. Accelerated failure time models provide a useful statistical framework for aging research. Experimental gerontology 2009; 44(3): 190-200. [DOI:10.1016/j.exger.2008.10.005]
23. Thiruvengadam G, Ramanujam R, Marappa L. Modeling the recovery time of patients with coronavirus disease 2019 using an accelerated failure time model. Journal of international medical research 2021; 49(8): 03000605211040263. [DOI:10.1177/03000605211040263]
24. Bakhshi E, Khoei RAA, Azarkeivan A, Kooshesh M, Biglarian A. Survival analysis of thalassemia major patients using Cox, Gompertz proportional hazard and Weibull accelerated failure time models. Medical journal of the Islamic Republic of Iran 2017; 31: 97. [DOI:10.14196/mjiri.31.97]
25. Khanal SP, Sreenivas V, Acharya SK. Accelerated failure time models: an application in the survival of acute liver failure patients in India. International journal science and research 2014; 3(6): 161-166.
26. Zhong Q, Peng J. Mean platelet volume/platelet count ratio predicts severe pneumonia of COVID-19. Journal of clinical laboratory analysis 2021; 35(1): e23607. [DOI:10.1002/jcla.23607]
27. Yang L, Dai J, Zhao J, Wang Y, Deng P, Wang J. Estimation of incubation period and serial interval of COVID-19: analysis of 178 cases and 131 transmission chains in Hubei province, China. Epidemiology and infection 2020; 148: e117. [DOI:10.1017/S0950268820001338]
28. Dinevari MF, Somi MH, Majd ES, Farhangi MA, Nikniaz Z. Anemia predicts poor outcomes of COVID-19 in hospitalized patients: a prospective study in Iran. BMC infectious diseases 2021; 21(1): 1-7. [DOI:10.1186/s12879-021-05868-4]
29. Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, Fritsche G, Wöll E, Weiss G. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. Journal of clinical medicine 2020; 9(8): 2429. [DOI:10.3390/jcm9082429]
30. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, Ng O-T, Marimuthu K, Ang LW, Mak TM. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. Jama 2020; 323(15): 1488-1494. [DOI:10.1001/jama.2020.3204]
31. Wu W, Wang A, Liu M. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. [DOI:10.1016/S0140-6736(20)30183-5]
32. Böning D, Kuebler WM, Bloch W. The Oxygen Dissociation Curve of Blood in COVID-19. American journal of physiology-lung cellular and molecular physiology 2021. 321(2): L349-L357. [DOI:10.1152/ajplung.00079.2021]
33. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience trends 2020. 14(1): 72-73. [DOI:10.5582/bst.2020.01047]
34. Anai M, Akaike K, Iwagoe H, Akasaka T, Higuchi T, Miyazaki A, Naito D, Tajima Y, Takahashi H, Komatsu T. Decrease in hemoglobin level predicts increased risk for severe respiratory failure in COVID-19 patients with pneumonia. Respiratory investigation 2021; 59(2): 187-193. [DOI:10.1016/j.resinv.2020.10.009]
35. 1. Nguyen HQ, Chu L, Amy Liu I-L, Lee JS, Suh D, Korotzer B, Yuen G, Desai S, Coleman KJ, Xiang AH. Associations between physical activity and 30-day readmission risk in chronic obstructive pulmonary disease. Annals of the American thoracic society 2014; 11(5): 695-705. [DOI:10.1513/AnnalsATS.201401-017OC]
36. Cecconi M, Piovani D, Brunetta E, Aghemo A, Greco M, Ciccarelli M, Angelini C, Voza A, Omodei P, Vespa E. Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for Covid-19 infection in Lombardy, Italy. Journal of clinical medicine 2020; 9(5): 1548. [DOI:10.3390/jcm9051548]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb