1. Islami M, Zarrabi A, Tada S, Kawamoto M, Isoshima T, Ito Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. International journal of nanomedicine 2018; 13: 6059. [
DOI:10.2147/IJN.S178374]
2. Pham TA, Kumar NA, Jeong YT. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles. Synthetic metals 2010; 160: 2028-2036. [
DOI:10.1016/j.synthmet.2010.07.034]
3. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano letters 2008; 8(3): 902-907. [
DOI:10.1021/nl0731872]
4. Xu LQ, Yee YK, Neoh KG, Kang ET, Fu GD. Cyclodextrin-functionalized graphene nanosheets, and their host-guest polymer nanohybrids. Polymer 2013; 54: 2264-2271. [
DOI:10.1016/j.polymer.2013.02.043]
5. Fang M, Wang K, Lu H, Yang Y, Nutt S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of materials chemistry 2009; 19: 7098-7105. [
DOI:10.1039/b908220d]
6. Xu Z, Zhu S, Wang M, Li Y, Shi P, Huang X. Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. ACS applied materials and interfaces 2015; 7(2): 1355-1363. [
DOI:10.1021/am507798d]
7. Huang T, Zhang L, Chen H, Gao C. A cross-linking graphene oxide-polyethyleneimine hybrid film containing ciprofloxacin: One-step preparation, controlled drug release and antibacterial performance. Journal of materials chemistry B 2015; 3(8): 1605-1611. [
DOI:10.1039/C4TB01896F]
8. Enayati M, Nemati A, Zarrabi A, Shokrgozar MA. Reduced graphene oxide: An alternative for Magnetic Resonance Imaging contrast agent. Materials letters 2018; 233: 363-366. [
DOI:10.1016/j.matlet.2018.09.044]
9. Zhang S, Yang K, Feng L, Liu Z. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 2011; 49(12): 4040-4049. [
DOI:10.1016/j.carbon.2011.05.056]
10. Wu S, Zhao X, Cui Z, Zhao C, Wang Y, Du L, Li Y. Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells. International journal of nanomedicine 2014; 9: 1413. [
DOI:10.2147/IJN.S57946]
11. Charmi J, Nosrati H, Amjad JM, Mohammadkhani R, Danafar H. Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery. Heliyon 2019; 5(4): e01466. [
DOI:10.1016/j.heliyon.2019.e01466]
12. Tiwari H, Karki N, Pal M, Basak S, Verma RK, Bal R, Kandpal ND, Bisht G, Sahoo NG. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids and surfaces B: biointerfaces 2019; 178: 452-459. [
DOI:10.1016/j.colsurfb.2019.03.037]
13. Alibolandi M, Mohammadi M, Taghdisi SM, Ramezani M, Abnous K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydrate polymers 2017; 155: 218-229. [
DOI:10.1016/j.carbpol.2016.08.046]
14. Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. International journal of pharmaceutics 2017; 516(1-2): 301-312. [
DOI:10.1016/j.ijpharm.2016.11.027]
15. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical journal of pharmaceutical research 2013; 12: 265-273. [
DOI:10.4314/tjpr.v12i2.20]
16. Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, biology and medicine 2010; 6(1): 9-24. [
DOI:10.1016/j.nano.2009.04.008]
17. Pourjavadi A, Asgari S, Hosseini SH. Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs. Journal of drug delivery science and technology 2020; 56: 101542. [
DOI:10.1016/j.jddst.2020.101542]
18. Motlagh NH, Parvin P, Mirzaie Z, Karimi R, Sanderson J, Atyabi F. Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO+ DOX. Biomedical optics express 2020; 11(7): 3783-3794. [
DOI:10.1364/BOE.389261]
19. Lai Q, Zhu S, Luo X, Zou M, Huang S. Ultraviolet-visible spectroscopy of graphene oxides. AIP advances 2012; 2(3): 032146. [
DOI:10.1063/1.4747817]
20. da Silva-Buzanello RA, Ferro AC, Bona E, Cardozo-Filho L, de Araújo PHH, Leimann FV, Gonçalves OH. Validation of an ultraviolet-visible (UV-Vis) technique for the quantitative determination of curcumin in poly (l-lactic acid) nanoparticles. Food chemistry 2015; 172: 99-104. [
DOI:10.1016/j.foodchem.2014.09.016]
21. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. The journal of physical chemistry B 2006; 110(17): 8535-8539. [
DOI:10.1021/jp060936f]
22. Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A. The chemistry, physiology and pathology of pH in cancer. Philosophical transactions of the royal society B: biological sciences 2014; 369(1638): 20130099. [
DOI:10.1098/rstb.2013.0099]
23. Malekmohammadi S, Hadadzadeh H, Farrokhpour H, Amirghofran Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. Soft matter 2018; 14(12): 2400-2410. [
DOI:10.1039/C7SM02248D]
24. Omidi S, Pirhayati M, Kakanejadifard A. Co-delivery of doxorubicin and curcumin by a pH-sensitive, injectable, and in situ hydrogel composed of chitosan, graphene, and cellulose nanowhisker. Carbohydrate polymers 2020; 231: 115745. [
DOI:10.1016/j.carbpol.2019.115745]
25. Motlagh NSH, Parvin P, Refahizadeh M, Bavali A. Fluorescence properties of doxorubicin coupled carbon nanocarriers. Applied optics 2017; 56(27): 7498-7503. [
DOI:10.1364/AO.56.007498]