Volume 26, Issue 4 (7-2022)                   IBJ 2022, 26(4): 313-323 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimifard N, Hadifar S, Kargarpour Kamakoli M, Behrouzi A, Khanipour S, Fateh A, et al . Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells. IBJ 2022; 26 (4) :313-323
URL: http://ibj.pasteur.ac.ir/article-1-3586-en.html
Abstract:  
Background: Autophagy induction has been shown to differ in magnitude depending on the mycobacterial species. However, few studies have investigated the specific autophagic capacity of different Mycobacterium tuberculosis (Mtb) strains in alveolar epithelial cells (ATs). This study aimed to elucidate the host autophagic response to different Mtb strains in ATs responsible for TB in the capital of Iran, Tehran.  
Methods: A549 cells were infected with three different Mtb clinical isolates (Beijing, NEW1, and CAS1/Delhi) and the reference strain H37Rv. Following RNA extraction, the expression of eight ATG genes, four mycobacterial genes, and three miRNAs was evaluated using quantitative RT-PCR.  
Results: The results revealed that all four strains influenced the autophagy pathway in various ways at different magnitudes. The Beijing and H37Rv strains could inhibit autophagosome formation, whereas the CAS and NEW1 strains induced autophagosome formation. The expression of genes involved in the fusion of autophagosomes to lysosomes (LAMP1) indicated that all the studied strains impaired the autophagolysosomal fusion; this result is not unexpected as Mtb can block the autophagolysomal fusion. In addition, the Beijing and H37RV strains prevented the formation of autophagic vacuoles, besides mycobacterial targeting of lysosomes and protease activity.
Conclusion: This preliminary study improved our understanding of how Mtb manages to overcome the host immune system, such as autophagy, and evaluated the genes used by specific strains during this process. Further studies with a large number of Mtb strains, encompassing the other main Mtb lineages, are inevitable.

References
1. Ruddraraju KV, Aggarwal D, Zhang ZY. Therapeutic targeting of protein tyrosine phosphatases from mycobacterium tuberculosis. Microorganisms 2021; 9(1): 14. [DOI:10.3390/microorganisms9010014]
2. Chuquimia OD, Petursdottir DH, Periolo N, Fernández C. Alveolar epithelial cells are critical in protection of the respiratory tract by secretion of factors able to modulate the activity of pulmonary macrophages and directly control bacterial growth. Infection and immunity 2013; 81(1): 381-389. [DOI:10.1128/IAI.00950-12]
3. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respiratory research 2001; 2(1): 1-20. [DOI:10.1186/rr36]
4. Thorley AJ, Ford PA, Giembycz MA, Goldstraw P, Young A, Tetley TD. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. The journal of immunology 2007; 178(1): 463-473. [DOI:10.4049/jimmunol.178.1.463]
5. Scordo J, Olmo-Fontánez A, Kelley H, Sidiki S, Arcos J, Akhter A, Wewers M, Torrelles J. The human lung mucosa drives differential Mycobacterium tuberculosis infection outcome in the alveolar epithelium. Mucosal immunology 2019; 12(3): 795-804. [DOI:10.1038/s41385-019-0156-2]
6. Palucci I, Delogu G. Host directed therapies for tuberculosis: futures strategies for an ancient disease. Chemotherapy 2018; 63(3): 172-180. [DOI:10.1159/000490478]
7. Mizushima N. Autophagy: process and function. Genes and development 2007; 21(22): 2861-2873. [DOI:10.1101/gad.1599207]
8. Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nature reviews molecular cell biology 2018; 19(9): 579-593. [DOI:10.1038/s41580-018-0033-y]
9. Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell research 2014; 24(1): 58-68. [DOI:10.1038/cr.2013.159]
10. Fabri M, Realegeno SE, Jo EK, Modlin RL. Role of autophagy in the host response to microbial infection and potential for therapy. Current opinion in immunology 2011; 23(1): 65-70. [DOI:10.1016/j.coi.2010.10.010]
11. Songane M, Kleinnijenhuis J, Netea MG, van Crevel R. The role of autophagy in host defense against Mycobacterium tuberculosis infection. Tuberculosis 2012; 92(5): 388-396. [DOI:10.1016/j.tube.2012.05.004]
12. Khan A, Jagannath C. Analysis of host-pathogen modulators of autophagy during Mycobacterium tuberculosis infection and therapeutic repercussions. International reviews of immunology 2017; 36(5): 271-286. [DOI:10.1080/08830185.2017.1356924]
13. Mvubu NE, Pillay B, Gamieldien J, Bishai W, Pillay M. Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells. Tuberculosis 2016; 97: 73-85. [DOI:10.1016/j.tube.2015.12.002]
14. Hadifar S, Behrouzi A, Fateh A, Khatami S, Rahimi Jamnani F, Siadat SD, Vaziri F. Comparative study of interruption of signaling pathways in lung epithelial cell by two different Mycobacterium tuberculosis lineages. Journal of cellular physiology 2019; 234(4): 4739-4753. [DOI:10.1002/jcp.27271]
15. Haque MF, Boonhok R, Prammananan T, Chaiprasert A, Utaisincharoen P, Sattabongkot J, Palittapongarnpim P, Ponpuak M. Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains. Innate immunity 2015; 21(7): 746-758. [DOI:10.1177/1753425915594245]
16. Laopanupong T, Prombutara P, Kanjanasirirat P, Benjaskulluecha S, Boonmee A, Palaga T, Méresse S, Paha J, Siregar TAP, Khumpanied T. Lysosome repositioning as an autophagy escape mechanism by Mycobacterium tuberculosis Beijing strain. Scientific reports 2021; 11(1): 1-17. [DOI:10.1038/s41598-021-83835-4]
17. Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C. The Emerging roles of autophagy-related microRNAs in cancer. International journal of biological sciences 2021; 17(1): 134. [DOI:10.7150/ijbs.50773]
18. Sabir N, Hussain T, Shah SZA, Peramo A, Zhao D, Zhou X. miRNAs in tuberculosis: new avenues for diagnosis and host-directed therapy. Frontiers in microbiology 2018; 9: 602. [DOI:10.3389/fmicb.2018.00602]
19. Kim JK, Kim TS, Basu J, Jo EK. MicroRNA in innate immunity and autophagy during mycobacterial infection. Cellular microbiology 2017; 19(1): e12687. [DOI:10.1111/cmi.12687]
20. Hadifar S, Kamakoli MK, Fateh A, Siadat SD, Vaziri F. Enhancing the differentiation of specific genotypes in Mycobacterium tuberculosis population. Scientific reports 2019; 9(1): 17946. [DOI:10.1038/s41598-019-54393-7]
21. Hadifar S, Shamkhali L, Kargarpour Kamakoli M, Mostafaei S, Khanipour S, Mansoori N, Fateh A, Siadat SD, Vaziri F. Genetic diversity of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in the capital of Iran. Molecular phylogenetics and evolution 2019; 132: 46-52. [DOI:10.1016/j.ympev.2018.11.019]
22. Romagnoli A, Petruccioli E, Palucci I, Camassa S, Carata E, Petrone L, Mariano S, Sali M, Dini L, Girardi E, Delogu G, Goletti D, Fimia GM. Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL-1β-induced autophagy. Cell death and disease 2018; 9(6): 624. [DOI:10.1038/s41419-018-0640-8]
23. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 2010; 140(5): 731-743. [DOI:10.1016/j.cell.2010.02.012]
24. Wiens KE, Ernst JD. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent. PLoS pathogens 2016; 12(8): e1005809. [DOI:10.1371/journal.ppat.1005809]
25. Guo XG, Ji TX, Xia Y, Ma YY. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection. Biochemical and biophysical research communications 2013; 432(2): 308-313. [DOI:10.1016/j.bbrc.2013.01.111]
26. Levine B, Yuan J. Autophagy in cell death: an innocent convict? The journal of clinical investigation 2005; 115(10): 2679-2688. [DOI:10.1172/JCI26390]
27. Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. International review of cell and molecular biology 2008; 266: 207-247. [DOI:10.1016/S1937-6448(07)66005-5]
28. Wang S, Huang Y, Zhou C, Wu H, Zhao J, Wu L, Zhao M, Zhang F, Liu H. The role of autophagy and related microRNAs in inflammatory bowel disease. Gastroenterology research and practice 2018; 2018:10. [DOI:10.1155/2018/7565076]
29. Chen H, Liu Gao MY, Zhang L, He FL, Shi YK, Pan XH, Wang H. MicroRNA-155 affects oxidative damage through regulating autophagy in endothelial cells. Oncology letters 2019; 17(2): 2237-2243. [DOI:10.3892/ol.2018.9860]
30. Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends in cell biology 2003; 13(3): 137-145. [DOI:10.1016/S0962-8924(03)00005-9]
31. Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. The EMBO journal 2007; 26(2): 313-324. [DOI:10.1038/sj.emboj.7601511]
32. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, Lee SH, Lee ZW, Cho SN, Kim JM. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS pathogens 2010; 6(12): e1001230. [DOI:10.1371/journal.ppat.1001230]
33. Samuel LP, Song CH, Wei J, Roberts EA, Dahl JL, Barry III CE, Jo EK, Friedman RL. Expression, production and release of the Eis protein by Mycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion. Microbiology 2007; 153(2): 529-540. [DOI:10.1099/mic.0.2006/002642-0]
34. Wong CH, Iskandar KB, Yadav SK, Hirpara JL, Loh T, Pervaiz S. Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PloS one 2010; 5(4): e9996. [DOI:10.1371/journal.pone.0009996]
35. Baros-Steyl SS, Nakedi KC, Ganief TA, Okendo JO, Tabb DL, Soares NC, Blackburn JM. Phospho-proteomics reveals new insights into the role of PknG during the persistence of pathogenic mycobacteria in host macrophages. Avaialable at: https://www.biorxiv. org/content/10.1101/2021.01.19.427367v1.full.
36. Zhang L, Zhang H, Zhao Y, Mao F, Wu J, Bai B, Xu Z, Jiang Y, Shi C. Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages. DNA and cell biology 2012; 31(2): 171-179. [DOI:10.1089/dna.2011.1290]
37. Chandra P, Ghanwat S, Matta SK, Yadav SS, Mehta M, Siddiqui Z, Singh A, Kumar D. Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Scientific reports 2015; 5(1): 1-10. [DOI:10.1038/srep16320]
38. Yang J, Chen D, He Y, Meléndez A, Feng Z, Hong Q, et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Journal of the American aging association 2013; 35(1):11-22. [DOI:10.1007/s11357-011-9324-3]
39. Yu Y, Zhao J. Modulated autophagy by microRNAs in osteoarthritis chondrocytes. BioMed research international 2019; 2019: 1484152. [DOI:10.1155/2019/1484152]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb