Volume 26, Issue 1 (1-2022)                   IBJ 2022, 26(1): 77-84 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bossaghzadeh F, Hajjari M, Sheikhi A, Salahshourifar I, Irani S. HOTAIR Induces the Downregulation of miR-200 Family Members in Gastric Cancer Cell Lines. IBJ 2022; 26 (1) :77-84
URL: http://ibj.pasteur.ac.ir/article-1-3486-en.html
Background: Gastric cancer (GC) is the fourth most common human malignancy and the second reason for cancer morbidity worldwide. Long noncoding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) has recently emerged as a promoter of metastasis in various cancer types, including GC, through the epithelial‑mesenchymal transition (EMT) process. However, the exact mechanism of HOTAIR in promoting EMT is unknown. Aberrant expression of the miR-200 family has been linked to the occurrence and development of various types of malignant tumors. This study investigates the correlation between the HOTAIR and miR-200 family gene expression patterns in GC cell lines. We investigated the miR-200 and HOTAIR due to their common molecular features in the EMT process. Methods: AGS and MKN45 cell lines were transfected with si-HOTAIR, along with a negative control. The effect of HOTAIR knockdown was also analyzed on cell viability and also on the expression of miR-200 family members, including miR-200a, -200b, and -200c, in cell lines using qRT-PCR. Statistical analysis was performed to find the potential correlation between the expression level of HOTAIR and miRs. Results: Our results showed significant increased miR-200 family expression level in transfected AGS and MKN45 GC cells (fold changes > 2; p < 0.001). Moreover, a negative correlation was observed between HOTAIR and miR-200 expression levels in GC cell lines (p < 0.05). Conclusion: Our findings showed a significant association between miR-200 family and HOTAIR expression levels in GC cell lines. Taken together, the HOTAIR-miR-200 axis seems to play a vital role in human GC, suggesting a potential therapeutic target in future GC treatment.

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer 2015; 136(5): e359-e386. [DOI:10.1002/ijc.29210]
2. Newton AD, Datta J, Loaiza-Bonilla A, Karakousis GC, Roses RE. Neoadjuvant therapy for gastric cancer: current evidence and future directions. Journal of gastrointestinal oncology 2015; 6(5): 534.
3. Hu QJ, Ito S, Yanagihara K, Mimori k. Molecular mechanism of peritoneal dissemination in gastric cancer. Journal of cancer metastasis and treatment 2018; 4: 39. [DOI:10.20517/2394-4722.2018.08]
4. Shimizu D, Kanda M, Kodera Y. Emerging evidence of the molecular landscape specific for hematogenous metastasis from gastric cancer. World journal of gastrointestinal oncology 2018; 10(6): 124-136. [DOI:10.4251/wjgo.v10.i6.124]
5. Liu Y, Sun M, Xia R, Zhang EB, Liu X-h, Zhang ZH, Xu TPp, De W, Liu BRr, Wang ZX. Linc HOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell death and disease 2015; 6(7): e1802. [DOI:10.1038/cddis.2015.150]
6. Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004; 118(3): 277-279. [DOI:10.1016/j.cell.2004.07.011]
7. Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Molecular cancer 2016; 15: 18. [DOI:10.1186/s12943-016-0502-x]
8. Guo F, Kerrigan BCP, Yang D, Hu L, Shmulevich I, Sood AK, Xue F, Zhang W. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. Journal of hematology and oncology 2014; 7: 19. [DOI:10.1186/1756-8722-7-19]
9. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F, Esteller M. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 2012; 31(16): 2062-2074. [DOI:10.1038/onc.2011.383]
10. Kiesslich T, Pichler M, Neureiter D. Epigenetic control of epithelial-mesenchymal-transition in human cancer. Molecular and clinical oncology 2013; 1(1): 3-11. [DOI:10.3892/mco.2012.28]
11. Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nature medicine 2013; 19(11): 1438-1449. [DOI:10.1038/nm.3336]
12. Costa FF. Epigenomics in cancer management. Cancer management and research 2010; 2: 255-265. [DOI:10.2147/CMAR.S7280]
13. Nobili S, Bruno L, Landini I, Napoli , Bechi P, Tonelli F, Rubio CA, Mini E, Nesi G. Genomic and genetic alterations influence the progression of gastric cancer. World journal of gastroenterology 2011; 17(3): 290-293. [DOI:10.3748/wjg.v17.i3.290]
14. Xue M, Zhuo Y, Shan B. MicroRNAs, long noncoding RNAs, and their functions in human disease. Methods in molecular biology 2017; 1617: 1-25. [DOI:10.1007/978-1-4939-7046-9_1]
15. Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Molecular immunology 2019; 112: 82-92. [DOI:10.1016/j.molimm.2019.04.011]
16. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472(7341): 120-124. [DOI:10.1038/nature09819]
17. Ha M, Kim VN. Regulation of microRNA biogenesis. Nature reviews molecular cell biology 2014; 15(8): 509-524. [DOI:10.1038/nrm3838]
18. Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009; 136(4): 669-687. [DOI:10.1016/j.cell.2009.01.046]
19. Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB life 2020; 72(5): 884-898. [DOI:10.1002/iub.2259]
20. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. cell 2007; 129(7): 1311-1323. [DOI:10.1016/j.cell.2007.05.022]
21. Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T, Zhang J, Kang Ch, Zhang Q. MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. International journal of oncology 2012; 40(4): 1162-1170.
22. Cong N, Du P, Zhang A, Shen F, Su J, Pu P, Wang T, Zjang J, Kang Ch, Zhang Q. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncology reports 2013; 29(4): 1579-1587. [DOI:10.3892/or.2013.2267]
23. Hajjari M, Behmanesh M, Sadeghizadeh M, Zeinoddini M. Up-regulation of HOTAIR long non-coding RNA in human gastric adenocarcinoma tissues. Medical oncology 2013; 30(3): 670. [DOI:10.1007/s12032-013-0670-0]
24. Sui C-j, Zhou Y-m, Shen W-f, Dai BH, Lu JJ, Zhang MF, Yang JM. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. Journal of molecular medicine 2016; 94(11): 1281-1296. [DOI:10.1007/s00109-016-1442-z]
25. Ferre F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Briefings in bioinformatics 2016; 17(1): 106-116. [DOI:10.1093/bib/bbv031]
26. Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing miRNA-lncRNA interactions. Methods in molecular biology 2016; 1402: 271-286. [DOI:10.1007/978-1-4939-3378-5_21]
27. Lee NK, Lee JH, Park CH, Yu D, Lee Y, Cheong J-H, Noh SH, Lee SK. Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma. Biochemical and biophysical research communications 2014; 451(2): 171-178. [DOI:10.1016/j.bbrc.2014.07.067]
28. Battistelli C, Cicchini C, Santangelo L, Tramontano A, Grassi L, Gonzalez FJ, Nonno V, Grassi G, Amicone L, Tripodi M. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition. Oncogene 2017; 36(7): 942-955. [DOI:10.1038/onc.2016.260]
29. Zhang JX, Han L, Bao Z-S, Wang Y-Y, Chen LY, Yan W, Liu N, YU SZ, Pu PY, You YP, Jiang T, Kang CS, Cooperative Group ChG. HOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical
30. and mesenchymal glioma. Neuro-oncology 2013; 15(12): 1595-1603. [DOI:10.1093/neuonc/not131]
31. Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer biology and medicine 2015; 12(1): 1-9.
32. Pan W, Liu L, Wei J, Ge Y, Zhang J, ChenH, Zhou L, Yuan Q, Zhou Ch, Yang M. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Molecular carcinogenesis 2016; 55(1): 90-96. [DOI:10.1002/mc.22261]
33. Zhao W, Dong S, Duan B, Chen P, Shi L, Gao H, Qi H. HOTAIR is a predictive and prognostic biomarker for patients with advanced gastric adenocarcinoma receiving fluorouracil and platinum combination chemotherapy. American journal of translational research 2015; 7(7): 1295-1302.
34. Bhan A, Mandal SS. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochimica et biophysica acta 2015; 1856(1): 151-164. [DOI:10.1016/j.bbcan.2015.07.001]
35. Song Y, Wang R, Li L-W, Wang Y-F, Wang Q-X, Zhang Q. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. International journal of oncology 2019; 54(1): 77-86. [DOI:10.3892/ijo.2018.4625]
36. Corté H, Manceau G, Blons H, Laurent-Puig P. MicroRNA and colorectal cancer. Digestive and liver disease 2012; 44(3): 195-200. [DOI:10.1016/j.dld.2011.10.010]
37. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz Th. A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells. EMBO reports 2008; 9(6): 582-589. [DOI:10.1038/embor.2008.74]
38. Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, Trompeter H-I, Niederacher D, Wernet P, Uhrberg M. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC research notes 2010; 3: 219. [DOI:10.1186/1756-0500-3-219]
39. Men D, Liang Y, Chen L. Decreased expression of microRNA-200b is an independent unfavorable prognostic factor for glioma patients. Cancer epidemiology 2014; 38(2): 152-156. [DOI:10.1016/j.canep.2014.01.003]
40. Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia 2013; 15(2): 180-IN22. [DOI:10.1593/neo.121828]
41. Soubani O, Ali AS, Logna F, Ali Sh, Philip PA, Sarkar FH. Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 2012; 33(8): 1563-1571. [DOI:10.1093/carcin/bgs189]
42. Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang Km, Kang Ch, Zhang Q. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer letters 2015; 359(2): 198-205. [DOI:10.1016/j.canlet.2015.01.005]
43. Xu ZY, Yu QM, Du YA, Yang LT, Dong RZ, Huang L, Yu PF, Cheng XD. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. International journal of biological sciences 2013; 9(6): 587-597. [DOI:10.7150/ijbs.6339]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb