Volume 26, Issue 2 (3-2022)                   IBJ 2022, 26(2): 124-131 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

aghayan S, azari G, seyedjafari E. Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions. IBJ. 2022; 26 (2) :124-131
URL: http://ibj.pasteur.ac.ir/article-1-3480-en.html
Abstract:  
Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of risedronate from PLGA microparticles embedded with ALG was studied as a drug delivery system for sustained release of the drug, which can be used in local administrations.
Methods: Risedronate-containing PLGA microparticles were fabricated using double emulsion solvent evaporation technique. Ionic cross-linking method was used to fabricate risedronate-loaded ALG. Risedronate-containing PLGA microparticles were then coated with ALG. The calibration curve of risedronate was traced to measure encapsulation efficiency (EE) and study the release pattern. Scanning electron microscope (SEM) imaging was carried out, and cell toxicity was examined using MTT assay. Statistical analysis of data was carried out using SPSS ver. 20 software, via one-way ANOVA and Tukey’s tests.  
Results: SEM imaging showed open porosities on ALGs. The mean EE of PLGA microparticles for risedronate was 57.14 ± 3.70%. Risedronate released completely after 72 h from ALG, and the cumulative release was significantly higher (p = 0.000) compared to PLGA microspheres coated with ALG, which demonstrated sustained released of risedronate until day 28. Risedronate-loaded ALG showed a significant decrease in gingival fibroblasts cell viability (p < 0.05).
Conclusion: Alginate-coated PLGA microspheres could release risedronate in a sustained and controlled way and also did not show cell toxicity. Therefore, they seem to be an appropriate system for risedronate delivery in local applications
Type of Study: Full Length | Subject: Pharmaceutical Biotechnology

References
1. Bartold PM, Cantley MD, Haynes DR. Mechanisms and control of pathologic bone loss in periodontitis. Periodontol 2000 2010; 53: 55-69. [DOI:10.1111/j.1600-0757.2010.00347.x]
2. Crandall C. Risedronate: a clinical review. Archives of internal medicine 2001; 161(3): 353. [DOI:10.1001/archinte.161.3.353]
3. Kwak HB, Kim JY, Kim KJ, Choi MK, Kim JJ, Kim KM Shin Y-I, Lee MS, Kim HS, Kim JW, Chun CH, Cho HJ, Hong GY, Juhng SK, Yoon KH, Park BH, Bae JM, Han JK, Oh J. Risedronate directly inhibits osteoclast differentiation and inflammatory bone loss. Biological and pharmaceutical bulletin 2009; 32(7): 1193-1198. [DOI:10.1248/bpb.32.1193]
4. Cetinkaya BO, Keles GC, Ayas B, Gurgor P. Effects of risedronate on alveolar bone loss and angiogenesis: a stereologic study in rats. Journal of periodontol 2008; 79(10): 1950-1961. [DOI:10.1902/jop.2008.080041]
5. Sharma D, Ivanovski S, Slevin M, Hamlet S, Pop TS, Brinzaniuc K, Petcu EB, Miroiu RI. Bisphosphonate-related osteonecrosis of jaw (BRONJ): diagnostic criteria and possible pathogenic mechanisms of an unexpected anti-angiogenic side effect. Vascular cell 2013 14; 5(1): 1. [DOI:10.1186/2045-824X-5-1]
6. Nam SH, Jeong JH, Che X, Lim KE, Nam H, Park JS, Choi JY. Topically administered risedronate shows powerful anti-osteoporosis effect in ovariectomized mouse model. Bone 2012; 50(1): 149-155. [DOI:10.1016/j.bone.2011.10.017]
7. Abtahi J, Agholme F, Sandberg O, Aspenberg P. Effect of local vs. systemic bisphosphonate delivery on dental implant fixation in a model of osteonecrosis of the jaw. Journal of dental research 2013; 92(3): 279-283. [DOI:10.1177/0022034512472335]
8. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Therapeutic delivery 2015; 6(1): 41-58. [DOI:10.4155/tde.14.91]
9. Makadia HK, Siegel SJ. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. polymers 2011; 3(3): 1377-1397. [DOI:10.3390/polym3031377]
10. Gu D, O'Connor AJ, G H Qiao G, Ladewig K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert opinion on drug delivery 2017; 14(7): 879-895. [DOI:10.1080/17425247.2017.1245290]
11. WICHTERLE O, LÍM D. Hydrophilic Gels for Biological Use. Nature. 1960;185(4706):117-118. [DOI:10.1038/185117a0]
12. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromolecular bioscience 2006; 6(8): 623-33. [DOI:10.1002/mabi.200600069]
13. Jain D, Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug development and industrial pharmacy 2014; 40(12): 1576-84. [DOI:10.3109/03639045.2014.917657]
14. Ching SH, Bansal N, Bhandari B. Alginate gel particles-A review of production techniques and physical properties. Critical reviews in food science and nutrition 2017; 57(6): 1133-1152. [DOI:10.1080/10408398.2014.965773]
15. Sugawara S, Imai T, Otagiri M. The controlled release of prednisolone using alginate gel. Pharmaceutical research 1994; 11(2): 272-277 [DOI:10.1023/A:1018963626248]
16. Stockwell A, Davis S, Walker S. In vitro evaluation of alginate gel systems as sustained release drug delivery systems. Journal of controlled release 1986; 3(1-4): 167-75. [DOI:10.1016/0168-3659(86)90077-5]
17. Gaspar M, Pais A, Sousa J, Brillaut J, Olivier J. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. International Journal of Pharmaceutics 2019; 556: 117-124. [DOI:10.1016/j.ijpharm.2018.12.005]
18. Swami A, Pishawikar S, HArinath N. Development and validation of stability indicating uv spectrophotometric method for the estimation of sodium risedronate. International journal of pharmacy and pharmaceutical sciences 2012; 4: 587-590.
19. Karthick V, Panda S, Kumar V, Kumar D, Shrestha L, Ariga K, Vasanth K, Chinnathambi Sh, StalinDhas T, UmaSuganya K.S. Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. Applied surface science 2019; 487: 211-217. [DOI:10.1016/j.apsusc.2019.05.047]
20. Chen W, Palazzo A, Hennink W, Kok R. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Molecular pharmaceutics 2016; 14(2): 459-467. [DOI:10.1021/acs.molpharmaceut.6b00896]
21. Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity [Internet]. 3rd ed. Geneva: ISO copyright office; 2009 [cited 25 November 2020]. Available from: http://nhiso.com/wp-content/uploads/ 2018/05/ISO-10993-5-2009.pdf
22. Lin Z, Wu J, Qiao W, Zhao Y, Wong K, Chu P, Bian L, Wu Sh, Zheng Y, Cheung KMC, Leung F, Yeung KWK. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 2018; 174: 1-16. [DOI:10.1016/j.biomaterials.2018.05.011]
23. Kim S, Sah H. Merits of sponge-like PLGA microspheres as long-acting injectables of hydrophobic drug. Journal of biomaterials science, polymer edition 2019; 30(18): 1725-1743. [DOI:10.1080/09205063.2019.1659712]
24. Ryu W, Kim S, Min C, Choy Y. Dry tablet formulation of PLGA nanoparticles with a preocular applicator for topical drug delivery to the eye. Pharmaceutics 2019; 11(12): 651. [DOI:10.3390/pharmaceutics11120651]
25. Qi F, Wu J, Fan Q, He F, Tian G, Yang T, Ma G, Su Zh. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids and surfaces B: biointerfaces 2013; 112:492-498. [DOI:10.1016/j.colsurfb.2013.08.048]
26. Nazemi Z, Nourbakhsh M, Kiani S, Heydari Y, Ashtiani M, Daemi H, Baharvand H. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. Journal of controlled release 2020; 321: 145-158. [DOI:10.1016/j.jconrel.2020.02.009]
27. Shi G, Ding Y, Zhang X, Wu L, He F, Ni C. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation. Journal of biomaterials science. polymer edition 2015; 26(16): 1152-1162. [DOI:10.1080/09205063.2015.1080456]
28. Uyen N, Hamid Z, Tram N, Ahmad N. Fabrication of alginate microspheres for drug delivery: A review. International journal of biological macromolecules 2020; 153:1035-1046. [DOI:10.1016/j.ijbiomac.2019.10.233]
29. Mandal S, Kumar S, Krishnamoorthy B, Basu S. Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. Brazilian journal of pharmaceutical sciences 2010; 46(4): 785-793. [DOI:10.1590/S1984-82502010000400021]
30. Zhai P, Chen X, Schreyer D. PLGA/alginate composite microspheres for hydrophilic protein delivery. Materials science and engineering: C 2015; 56: 251-259. [DOI:10.1016/j.msec.2015.06.015]
31. Nasr M, Awad G, Mansour S, Taha I, Shamy A, Mortada N. Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting. European journal of pharmaceutics and biopharmaceutics 2011; 79(3): 601-611. [DOI:10.1016/j.ejpb.2011.07.010]
32. Aghayan S, Asghari A, Mortazavi P, Marzoughi S. Histomorphometric effects of 2% risedronate gel on calvarial Bone defects in rabbits. Journal of dentistry 2021; 22(1): 14-20.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb