Volume 26, Issue 3 (5-2022)                   IBJ 2022, 26(3): 202-208 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khani M, Burke B, Ebrahimi M, Irani S, Sotodehnejhad F. Comparison Study on the Effect of Mesenchymal Stem Cells-Conditioned Medium Derived from Adipose and Wharton’s Jelly on Versican Gene Expression in Hypoxia. IBJ 2022; 26 (3) :202-208
URL: http://ibj.pasteur.ac.ir/article-1-3424-en.html
Background: Mesenchymal stem cells (MSCs) enhance tissue repair through paracrine effects following transplantation. The versican protein is one of the important factors contributing to this repair mechanism. Using MSC conditioned medium for cultivating monocytes may increase versican protein production and could be a good alternative for transplantation of MSCs. This study investigates the effect of culture medium conditioned by human MSCs on the expression of the versican gene in peripheral blood mononuclear cells (PBMCs) under hypoxia-mimetic and normoxic conditions.
Methods: The conditioned media used were derived from either adipose tissue or from Wharton’s jelly (WJ). Flow cytometry for surface markers (CD105, CD73, and CD90) was used to confirm MSCs. The PBMCs were isolated and cultured with the culture media of the MSC derived from either the adipose tissue or WJ. Desferrioxamine and cobalt chloride (200 and 300 µM final concentrations, respectively) were added to monocytes media to induce hypoxia-mimetic conditions. Western blotting was applied to detect HIF-1α protein and confirm hypoxia-mimetic conditions in PBMC. Versican gene expression was assessed in PBMC using RT-PCR. Western blotting showed that the expression of HIF-1α in PBMC increased significantly (p < 0.01).
Results: RT-PCR results demonstrated that the expression of the versican and VEGF genes in PBMC increased significantly (p < 0.01) in hypoxia-mimetic conditions as compared to normoxia.
Conclusion: Based on the findings in the present study, the secreted factors of MSCs can be replaced by direct use of MSCs to improve damaged tissues.

1. Herzog EL, Chai L, Krause DSJB. Plasticity of marrow-derived stem cells. Blood 2003; 102(10): 3483-3493. [DOI:10.1182/blood-2003-05-1664]
2. Shi M, Liu ZW, Wang FSJC, Immunology E. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clinical and experimental immunology 2011; 164(1): 1-8. [DOI:10.1111/j.1365-2249.2011.04327.x]
3. Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert opinion on biological therapy 2009; 9(7): 879-887. [DOI:10.1517/14712590903039684]
4. Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan CJIjoms. Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. International journal of molecular sciences 2013; 14(6): 11692-11712. [DOI:10.3390/ijms140611692]
5. Jyothi Prasanna S, Sowmya Jahnavi VJTOTE, Journal RM. Wharton's jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. The open tissue engineering and regenerative medicine journal 2011; 4(1): 28-38. [DOI:10.2174/1875043501104010028]
6. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature reviews. Immunology 2014; 14(6): 392. [DOI:10.1038/nri3671]
7. François M, Romieu-Mourez R, Li M, Galipeau JJMT. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular therapy 2012; 20(1): 187-195. [DOI:10.1038/mt.2011.189]
8. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nature reviews. Immunology 2011; 11(11): 762-774. [DOI:10.1038/nri3070]
9. Andersson-Sjöland A, Hallgren O, Rolandsson S, Weitoft M, Tykesson E, Larsson-Callerfelt A-K, Rydell-Törmänen K, Bjermer L, Malmström A, Karlsson JC, Westergren-Thorsson G. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology 2014; 25(3): 243-251. [DOI:10.1093/glycob/cwu120]
10. Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OM, et al. Versican-a critical extracellular matrix regulator of immunity and inflammation. Frontiers in immunology 2020; 11: 512. [DOI:10.3389/fimmu.2020.00512]
11. Wu Y, Wu J, Lee DY, Yee A, Cao L, Zhang Y, Kiani C, Yang BB. Versican protects cells from oxidative stress-induced apoptosis. Matrix biology 2005; 24(1): 3-13. [DOI:10.1016/j.matbio.2004.11.007]
12. Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M. The effect of hypoxia on mesenchymal stem cell biology. Advanced pharmaceutical bulletin 2015; 5(2): 141. [DOI:10.15171/apb.2015.021]
13. Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, LewisCE. Expression of HIF-1α by human macrophages: implications for the use of macrophages in hypoxia‐regulated cancer gene therapy. The journal of pathology 2002; 196(2): 204-212. [DOI:10.1002/path.1029]
14. Staples KJ, Sotoodehnejadnematalahi F, Pearson H, Frankenberger M, Francescut L, Ziegler-Heitbrock L, Burke B. Monocyte-derived macrophages matured under prolonged hypoxia transcriptionally up-regulate HIF-1α mRNA. Immunobiology 2011; 216(7): 832-839. [DOI:10.1016/j.imbio.2010.12.005]
15. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN. Mesenchymal precursor cells in the blood of normal individuals. Arthritis research and therapy 2000; 2(6): 477. [DOI:10.1186/ar130]
16. Broderick C, Duncan L, Taylor N, Dick ADJIo, science v. IFN-γ and LPS-Mediated IL-10-Dependent Suppression of Retinal Microglial Activation. Investigative ophthalmology and visual science 2000; 41(9): 2613-2622.
17. Khan WS, Adesida AB, Hardingham TE. Hypoxic conditions increase hypoxia-inducible transcription factor 2α and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis research and therapy 2007; 9(3): R55. [DOI:10.1186/ar2211]
18. Mabjeesh N, Amir S. Hypoxia-inducible factor (HIF) in human tumorigenesis. Histology and histopathology 2007; 22(4/6): 559.
19. Shih S-C, Claffey KP. Role of AP-1 and HIF-1 transcription factors in TGF-β activation of VEGF expression. Growth factors 2001; 19(1): 19-34. [DOI:10.3109/08977190109001073]
20. Eming SA, Krieg T, editors. Molecular mechanisms of VEGF-A action during tissue repair. Journal of investigative dermatology symposium proceedings 2006; 11(1): 79-86 [DOI:10.1038/sj.jidsymp.5650016]
21. Sotoodehnejadnematalahi F, Staples KJ, Chrysanthou E, Pearson H, Ziegler-Heitbrock L, Burke B. Mechanisms of hypoxic up-regulation of versican gene expression in macrophages. PLoS one 2015; 10(6): e0125799. [DOI:10.1371/journal.pone.0125799]
22. Yang W, Yee AJ. Versican 3′-untranslated region (3′ UTR) promotes dermal wound repair and fibroblast migration by regulating miRNA activity. Biochimica et biophysica acta 2014; 1843(7): 1373-1385. [DOI:10.1016/j.bbamcr.2014.02.015]
23. Andersson-Sjöland A, Hallgren O, Rolandsson S, Weitoft M, Tykesson E, Larsson-Callerfelt A-K, Rydell-Törmänen K, Bjermer L, Malmström A, Karlsson JC, Westergren-Thorsson G. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology 2014; 25(3): 243-251. [DOI:10.1093/glycob/cwu120]
24. Theocharis AD. Human colon adenocarcinoma is associated with specific post-translational modifications of versican and decorin. Biochimica et biophysica acta 2002; 1588(2): 165-72. [DOI:10.1016/S0925-4439(02)00161-8]
25. Rahmani M, McDonald PC, Wong BW, McManus BM. Transplant vascular disease: role of lipids and proteoglycans. The canadian journal of cardiology 2004; 20: 58B-65B.
26. Seidelmann SB, Kuo C, Pleskac N, Molina J, Sayers S, Li R, Zhou J, Johnson P, Braun K, Chan C, Teupser D, Breslow J, Wight TN, Tall AR, Welch CL. Athsq1 is an atherosclerosis modifier locus with dramatic effects on lesion area and prominent accumulation of versican. Arteriosclerosis, thrombosis, and vascular biology 2008; 28(12): 2180-2186. [DOI:10.1161/ATVBAHA.108.176800]
27. Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circulation research 2004; 94(9): 1158-1167. [DOI:10.1161/01.RES.0000126921.29919.51]
28. Asplund A, Stillemark-Billton P, Larsson E, Rydberg EK, Moses J, Hultén LM, Fagerberg B, Camejo G, Bondjers G. Hypoxic regulation of secreted proteoglycans in macrophages. Glycobiology 2010; 20(1): 33-40. [DOI:10.1093/glycob/cwp139]
29. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Experimental hematology 2009; 37(12): 1445-1453. [DOI:10.1016/j.exphem.2009.09.004]
30. Jiang X-X, Zhang Y, Liu B, Zhang S-X, Wu Y, Yu X-D, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105(10): 4120-4126. [DOI:10.1182/blood-2004-02-0586]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb