1. Rupprecht C, Kuzmin I, Meslin F. Lyssaviruses and rabies: current conundrums, concerns, contradictions and controversies. F1000 research 2017; 6: 184. [
DOI:10.12688/f1000research.10416.1]
2. Smith JS. New aspects of rabies with emphasis on epidemiology, diagnosis, and prevention of the disease in the United States. Clinical microbiology reviews 1996; 9(2): 166-176. [
DOI:10.1128/CMR.9.2.166]
3. Jackson AC. Human Rabies: a 2016 Update. Current infectious disease reports 2016; 18(11): 38. [
DOI:10.1007/s11908-016-0540-y]
4. Tordo N, Kouknetzoff A. The rabies virus genome: an overview. Onderstepoort journal of veterinary research 1993; 60(4): 263-269.
5. Wu X, Franka R, Velasco-Villa A, Rupprecht CE. Are all lyssavirus genes equal for phylogenetic analyses? Virus research 2007; 129(2): 91-103. [
DOI:10.1016/j.virusres.2007.06.022]
6. Kuzmin IV, Hughes GJ, Botvinkin AD, Orciari LA, Rupprecht CE. Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirus genotype definition. Virus research 2005; 111(1): 28-43. [
DOI:10.1016/j.virusres.2005.03.008]
7. Nadin-Davis SA. Molecular Epidemiology. In: Anthony R. Fooks ACJ, editor. Rabies: Scientific Basis of the Disease and Its Management. United Kingdom: Elsevier; 2020. P. 143-193. [
DOI:10.1016/B978-0-12-818705-0.00005-4]
8. Mebatsion T, Weiland F, Conzelmann KK. Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. Journal of virology 1999; 73(1): 242-250. [
DOI:10.1128/JVI.73.1.242-250.1999]
9. Wunner WH CK. Rabies virus. In: Anthony R. Fooks ACJ, editor. RABIES Scientific Basis of the Disease and Its Management. United Kingdom: Elsevier; 2020. p. 43-81. [
DOI:10.1016/B978-0-12-818705-0.00002-9]
10. Jackson AC. Diabolical effects of rabies encephalitis. Journal for neurovirology 2016; 22(1): 8-13. [
DOI:10.1007/s13365-015-0351-1]
11. Scott CA, Rossiter JP, Andrew RD, Jackson AC. Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. Journal for neurovirology 2008; 82(1): 513-521. [
DOI:10.1128/JVI.01677-07]
12. Faber M, Pulmanausahakul R, Nagao K, Prosniak M, Rice AB, Koprowski H, Schnell MJ, Dietzschold B. Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proceedings of the national academy of sciences of the United States of America 2004; 101(46): 16328-16332. [
DOI:10.1073/pnas.0407289101]
13. Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 2009; 9(9): 2399-2407. [
DOI:10.1002/pmic.200701007]
14. Wang X, Zhang S, Sun C, Yuan ZG, Wu X, Wang D, Ding Z, Hu R. Proteomic profiles of mouse neuro N2a cells infected with variant virulence of rabies viruses. Journal of microbiology and biotechnology 2011; 21(4): 366-373. [
DOI:10.4014/jmb.1010.10003]
15. Thanomsridetchai N, Singhto N, Tepsumethanon V, Shuangshoti S, Wacharapluesadee S, Sinchaikul S, Chen ST, Hemachudha T, Thongboonkerd V. Comprehensive proteome analysis of hippocampus, brainstem, and spinal cord from paralytic and furious dogs naturally infected with rabies. Journal of proteome research 2011; 10(11): 4911-4924. [
DOI:10.1021/pr200276u]
16. Farahtaj F, Zandi F, Khalaj V, Biglari P, Fayaz A, Vaziri B. Proteomics analysis of human brain tissue infected by street rabies virus. Molecular biology reports 2013; 40(11): 6443-6450. [
DOI:10.1007/s11033-013-2759-0]
17. Zandi F, Eslami N, Torkashvand F, Fayaz A, Khalaj V, Vaziri B. Expression changes of cytoskeletal associated proteins in proteomic profiling of neuroblastoma cells infected with different strains of rabies virus. Journal of medical virology 2013; 85(2): 336-347. [
DOI:10.1002/jmv.23458]
18. Venugopal AK, Ghantasala SS, Selvan LD, Mahadevan A, Renuse S, Kumar P, Pawar H, Sahasrabhuddhe NA, Suja MS, Ramachandra YL, Prasad TS, Madhusudhana SN, Hc H, Chaerkady R, Satishchandra P, Pandey A, Shankar SK. Quantitative proteomics for identifying biomarkers for Rabies. Clinical proteomics 2013; 10(1): 3. [
DOI:10.1186/1559-0275-10-3]
19. Alandijany T, Kammouni W, Roy Chowdhury SK, Fernyhough P, Jackson AC. Mitochondrial dysfunction in rabies virus infection of neurons. Journal of neurovirology 2013; 19(6): 537-549. [
DOI:10.1007/s13365-013-0214-6]
20. Gerold G, Bruening J, Weigel B, Pietschmann T. Protein interactions during the flavivirus and hepacivirus life cycle. Molecular and cellular proteomics 2017; 16(4 suppl 1): S75-S91. [
DOI:10.1074/mcp.R116.065649]
21. Schnell MJ, McGettigan JP, Wirblich C, Papaneri A. The cell biology of rabies virus: Using stealth to reach the brain. Nature reviews microbiology 2010; 8(1): 51-61. [
DOI:10.1038/nrmicro2260]
22. Wiktor T, Gyorgy E, Schlumberger D, Sokol F, Koprowski H. Antigenic properties of rabies virus components. Journal of immunology 1973; 110(1): 269-276.
23. Caillet-Saguy C, Maisonneuve P, Delhommel F, Terrien E, Babault N, Lafon M, Cordier F, Wolff N. Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus. Progress in biophysics and molecular biology 2015; 119(1): 53-59. [
DOI:10.1016/j.pbiomolbio.2015.02.007]
24. Lentz TL, Burrage TG, Smith AL, Crick J, Tignor GH. Is the acetylcholine receptor a rabies virus receptor? Science 1982; 215(4529): 182-184. [
DOI:10.1126/science.7053569]
25. Lewis P, Fu Y, Lentz TL. Rabies virus entry at the neuromuscular junction in nerve-muscle cocultures. Muscle nerve 2000; 23(5): 720-730.
https://doi.org/10.1002/(SICI)1097-4598(200005)23:5<720::AID-MUS9>3.0.CO;2-5 [
DOI:10.1002/(SICI)1097-4598(200005)23:53.0.CO;2-5]
26. Bracci L, Antoni G, Cusi MG, Lozzi L, Niccolai N, Petreni S, Rustici M, Santucci A, Soldani P, Valensin PE, et al. Antipeptide monoclonal antibodies inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor. Molecular immunology 1988; 25(9): 881-888. [
DOI:10.1016/0161-5890(88)90125-3]
27. Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M. The neural cell adhesion molecule is a receptor for rabies virus. Journal of virology 1998; 72(9): 7181-7190. [
DOI:10.1128/JVI.72.9.7181-7190.1998]
28. Tuffereau C, Benejean J, Blondel D, Kieffer B, Flamand A. Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO journal 1998; 17(24): 7250-7259. [
DOI:10.1093/emboj/17.24.7250]
29. Tuffereau C, Desmezieres E, Benejean J, Jallet C, Flamand A, Tordo N, Perrin P. Interaction of lyssaviruses with the low-affinity nerve-growth factor receptor p75NTR. Journal of general virology 2001; 82(Pt 12): 2861-2867. [
DOI:10.1099/0022-1317-82-12-2861]
30. Ito N, Takayama M, Yamada K, Sugiyama M, Minamoto N. Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. Journal of virology 2001; 75(19): 9121-9128. [
DOI:10.1128/JVI.75.19.9121-9128.2001]
31. Kucera P, Dolivo M, Coulon P, Flamand A. Pathways of the early propagation of virulent and avirulent rabies strains from the eye to the brain. Journal of virology 1985; 55(1): 158-162. [
DOI:10.1128/jvi.55.1.158-162.1985]
32. Yan X, Mohankumar PS, Dietzschold B, Schnell MJ, Fu ZF. The rabies virus glycoprotein determines the distribution of different rabies virus strains in the brain. Journal for neurovirology 2002; 8(4): 345-352. [
DOI:10.1080/13550280290100707]
33. Dougherty KD, Milner TA. p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. Journal of comparative neurology 1999; 407(1): 77-91.
https://doi.org/10.1002/(SICI)1096-9861(19990428)407:1<77::AID-CNE6>3.0.CO;2-S [
DOI:10.1002/(SICI)1096-9861(19990428)407:13.0.CO;2-S]
34. Lafon M. Rabies virus receptors. Journal of neurovirology 2005; 11(1): 82-87. [
DOI:10.1080/13550280590900427]
35. Wang J, Wang Z, Liu R, Shuai L, Wang X, Luo J, Wang C, Chen W, Wang X, Ge J, He X, Wen Z, Bu Z. Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS pathogens 2018; 14(7): e1007189. [
DOI:10.1371/journal.ppat.1007189]
36. Azimzadeh Jamalkandi S, Mozhgani SH, Gholami Pourbadie H, Mirzaie M, Noorbakhsh F, Vaziri B, Gholami A, Ansari-Pour N, Jafari M. Systems biomedicine of rabies delineates the affected signaling pathways. Frontiers in microbiology 2016; 7: 1688. [
DOI:10.3389/fmicb.2016.01688]
37. Yin K, Li Y, Ma Z, Yang Y, Zhao H, Liu C, Jin M, Wudong G, Sun Y, Hang T, Zhang H, Wang F, Wen Y. SNAP25 regulates the release of the Rabies virus in nerve cells via SNARE complex-mediated membrane fusion. Veterinary microbiology 2020; 245: 108699. [
DOI:10.1016/j.vetmic.2020.108699]
38. Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, Sawaki Y, Koyama H, Sugiyama M. Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. Journal of virology 2010; 84(8): 4002-4012. [
DOI:10.1128/JVI.02220-09]
39. Lahaye X, Vidy A, Fouquet B, Blondel D. Hsp70 protein positively regulates rabies virus infection. Journal of virology 2012; 86(9): 4743-4751. [
DOI:10.1128/JVI.06501-11]
40. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nature reviews molecular cell biology 2019; 20(11): 665-680. [
DOI:10.1038/s41580-019-0133-3]
41. Wan Q, Song D, Li H, He ML. Stress proteins: The biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal transduction and targeted therapy 2020; 5(1): 125. [
DOI:10.1038/s41392-020-00233-4]
42. Zhang J, Wu X, Zan J, Wu Y, Ye C, Ruan X, Zhou J. Cellular chaperonin CCTgamma contributes to rabies virus replication during infection. Journal of virology 2013; 87(13): 7608-7621. [
DOI:10.1128/JVI.03186-12]
43. Zhang J, Han Q, Song Y, Chen Q, Xia X. Analysis of subcellular prefoldin 1 redistribution during rabies virus infection. Jundishapur journal of microbiology 2015; 8(7): e24757. [
DOI:10.5812/jjm.24757v2]
44. Broer L, Ikram MA, Schuur M, DeStefano AL, Bis JC, Liu F, Rivadeneira F, Uitterlinden AG, Beiser AS, Longstreth WT, Hofman A, Aulchenko Y, Seshadri S, Fitzpatrick AL, Oostra BA, Breteler MM, van Duijn CM. Association of HSP70 and its co-chaperones with Alzheimer's disease. Journal of Alzheimer's disease 2011; 25(1): 93-102. [
DOI:10.3233/JAD-2011-101560]
45. Morin B, Liang B, Gardner E, Ross RA, Whelan SPJ. An in vitro RNA synthesis assay for rabies virus defines ribonucleoprotein interactions critical for polymerase activity. Journal of virology 2017; 91(1): e01508-e01516. [
DOI:10.1128/JVI.01508-16]
46. Canter DM, Perrault J. Stabilization of vesicular stomatitis virus L polymerase protein by P protein binding: a small deletion in the C-terminal domain of L abrogates binding. Virology 1996; 219(2): 376-386. [
DOI:10.1006/viro.1996.0263]
47. Bauer A, Nolden T, Nemitz S, Perlson E, Finke S. A dynein light chain 1 binding motif in rabies virus polymerase L protein plays arole in microtubule reorganization and viral primary transcription. Journal of virology 2015; 89(18): 9591-9600. [
DOI:10.1128/JVI.01298-15]
48. Asthana J, Kuchibhatla A, Jana SC, Ray K, Panda D. Dynein light chain 1 (LC8) association enhances microtubule stability and promotes microtubule bundling. Journal of biological chemistry 2012; 287(48): 40793-40805. [
DOI:10.1074/jbc.M112.394353]
49. Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature reviews molecular cell biology 2007; 8(12): 1006-1016. [
DOI:10.1038/nrm2277]
50. Blondel D, Regad T, Poisson N, Pavie B, Harper F, Pandolfi PP, De The H, Chelbi-Alix MK. Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 2002; 21(52): 7957-7970. [
DOI:10.1038/sj.onc.1205931]
51. Vidy A, Chelbi-Alix M, Blondel D. Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. Journal of virology 2005; 79(22): 14411-14420. [
DOI:10.1128/JVI.79.22.14411-14420.2005]
52. Brzozka K, Finke S, Conzelmann KK. Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. Journal of virology 2006; 80(6): 2675-2683. [
DOI:10.1128/JVI.80.6.2675-2683.2006]
53. Lieu KG, Brice A, Wiltzer L, Hirst B, Jans DA, Blondel D, Moseley GW. The rabies virus interferon antagonist P protein interacts with activated STAT3 and inhibits Gp130 receptor signaling. Journal of virology 2013; 87(14): 8261-8265. [
DOI:10.1128/JVI.00989-13]
54. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochemical journal 1998; 334( Pt 2): 297-314. [
DOI:10.1042/bj3340297]
55. Sonthonnax F, Besson B, Bonnaud E, Jouvion G, Merino D, Larrous F, Bourhy H. Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway. Scientific reports 2019; 9(1): 12171. [
DOI:10.1038/s41598-019-48507-4]
56. Brice A, Whelan DR, Ito N, Shimizu K, Wiltzer-Bach L, Lo CY, Blondel D, Jans DA, Bell TD, Moseley GW. Quantitative analysis of the microtubule interaction of rabies virus P3 protein: roles in immune evasion and pathogenesis. Scientific reports 2016; 6: 33493. [
DOI:10.1038/srep33493]
57. Moseley GW, Lahaye X, Roth DM, Oksayan S, Filmer RP, Rowe CL, Blondel D, Jans DA. Dual modes of rabies P-protein association with microtubules: a novel strategy to suppress the antiviral response. Journal of cell science 2009; 122(Pt 20): 3652-3662. [
DOI:10.1242/jcs.045542]
58. Brzozka K, Finke S, Conzelmann KK. Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. Journal of virology 2005; 79(12): 7673-7681. [
DOI:10.1128/JVI.79.12.7673-7681.2005]
59. Rieder M, Brzozka K, Pfaller CK, Cox JH, Stitz L, Conzelmann KK. Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: inhibition of interferon regulatory factor 3 activation is important for pathogenicity. Journal of virology 2011; 85(2): 842-852. [
DOI:10.1128/JVI.01427-10]
60. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314(5801): 994-997. [
DOI:10.1126/science.1132505]
61. Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of general virology 2008; 89(Pt 1): 1-47. [
DOI:10.1099/vir.0.83391-0]
62. Masatani T, Ozawa M, Yamada K, Ito N, Horie M, Matsuu A, Okuya K, Tsukiyama-Kohara K, Sugiyama M, Nishizono A. Contribution of the interaction between the rabies virus P protein and I-kappa B kinase to the inhibition of type I IFN induction signalling. Journal of general virology 2016; 97(2): 316-326. [
DOI:10.1099/jgv.0.000362]
63. Li Y, Dong W, Shi Y, Deng F, Chen X, Wan C, Zhou M, Zhao L, Fu ZF, Peng G. Rabies virus phosphoprotein interacts with ribosomal protein L9 and affects rabies virus replication. Virology 2016; 488: 216-224. [
DOI:10.1016/j.virol.2015.11.018]
64. Liu J, Liao M, Yan Y, Yang H, Wang H, Zhou J. Rabies virus phosphoprotein P5 binding to BECN1 regulates self-replication by BECN1-mediated autophagy signaling pathway. Cell communication and signaling 2020; 18(1): 153. [
DOI:10.1186/s12964-020-00644-4]
65. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, Xu Y, Yan Y, Zan J, Liao M, DiCaprio E, Li J, Su S, Zhou J. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy 2017; 13(4): 739-753. [
DOI:10.1080/15548627.2017.1280220]
66. Mao J, Lin E, He L, Yu J, Tan P, Zhou Y. Autophagy and Viral Infection. Advances in experimental medicine and biology 2019; 1209: 55-78. [
DOI:10.1007/978-981-15-0606-2_5]
67. Xing Liu JZ, Fang Li, Yibrah Tekle Hagoss, Weldu, Tesfagaber LW, Zilong Wang, Dongming Zhao, Zhigao, Bu Z. Host protein ABCE1 interacts with the viral phosphoprotein and promotes rabies virus replication. Biosafety and Health 2020; 2(3): 157-163. [
DOI:10.1016/j.bsheal.2020.07.011]
68. Le Roy F, Bisbal C, Silhol M, Martinand C, Lebleu B, Salehzada T. The 2-5A/RNase L/RNase L inhibitor (RLI) [correction of (RNI)] pathway regulates mitochondrial mRNAs stability in interferon alpha-treated H9 cells. Journal of biological chemistry 2001; 276(51): 48473-48482. [
DOI:10.1074/jbc.M107482200]
69. Tian Y, Han X, Tian DL. The biological regulation of ABCE1. IUBMB Life 2012; 64(10): 795-800. [
DOI:10.1002/iub.1071]
70. Bisbal C, Salehzada T, Silhol M, Martinand C, Le Roy F, Lebleu B. The 2-5A/RNase L pathway and inhibition by RNase L inhibitor (RLI). Methods in molecular biology 2001; 160: 183-198. [
DOI:10.1385/1-59259-233-3:183]
71. Chen S, Zhang W, Wu Z, Zhang J, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Goose Mx and OASL play vital roles in the antiviral effects of type I, II, and III interferon against newly emerging avian flavivirus. Frontiers in immunology 2017; 8: 1006. [
DOI:10.3389/fimmu.2017.01006]
72. Melchjorsen J, Kristiansen H, Christiansen R, Rintahaka J, Matikainen S, Paludan SR, Hartmann R. Differential regulation of the OASL and OAS1 genes in response to viral infections. Journal of interferon and cytokine research 2009; 29(4): 199-207. [
DOI:10.1089/jir.2008.0050]
73. Silverman RH. Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. Journal of virology 2007; 81(23): 12720-12729. [
DOI:10.1128/JVI.01471-07]
74. Zhu J, Ghosh A, Sarkar SN. OASL-a new player in controlling antiviral innate immunity. Currrent opinion virology 2015; 12: 15-19. [
DOI:10.1016/j.coviro.2015.01.010]
75. Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Currrent opinion virology 2011; 1(6): 519-525. [
DOI:10.1016/j.coviro.2011.10.008]
76. Tian B, Yuan Y, Yang Y, Luo Z, Sui B, Zhou M, Fu ZF, Zhao L. Interferon-inducible GTPase 1 impedes the dimerization of rabies virus phosphoprotein and restricts viral replication. Journal of virology 2020; 94(21). [
DOI:10.1128/JVI.01203-20]
77. Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses 2016; 8(8). [
DOI:10.3390/v8080231]
78. Jacob Y, Badrane H, Ceccaldi PE, Tordo N. Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. Journal of virology 2000; 74(21): 10217-10222. [
DOI:10.1128/JVI.74.21.10217-10222.2000]
79. Raux H, Flamand A, Blondel D. Interaction of the rabies virus P protein with the LC8 dynein light chain. Journal of virology 2000; 74(21): 10212-10216. [
DOI:10.1128/JVI.74.21.10212-10216.2000]
80. Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. The cytoplasmic dynein transport machinery and its many cargoes. Nature reviews molecular cell biology 2018; 19(6): 382-398. [
DOI:10.1038/s41580-018-0004-3]
81. Tan GS, Preuss MA, Williams JC, Schnell MJ. The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proceedings of the national academy of sciences of the United States of America 2007; 104(17): 7229-7234. [
DOI:10.1073/pnas.0701397104]
82. Salvetti A, Coute Y, Epstein A, Arata L, Kraut A, Navratil V, Bouvet P, Greco A. Nuclear functions of nucleolin through global proteomics and interactomic approaches. Journal of proteome research 2016; 15(5): 1659-1669. [
DOI:10.1021/acs.jproteome.6b00126]
83. Oksayan S, Nikolic J, David CT, Blondel D, Jans DA, Moseley GW. Identification of a role for nucleolin in rabies virus infection. Journal of virology 2015; 89(3): 1939-1943. [
DOI:10.1128/JVI.03320-14]
84. Fouquet B, Nikolic J, Larrous F, Bourhy H, Wirblich C, Lagaudriere-Gesbert C, Blondel D. Focal adhesion kinase is involved in rabies virus infection through its interaction with viral phosphoprotein P. Journal of virology 2015; 89(3): 1640-1651. [
DOI:10.1128/JVI.02602-14]
85. Ilic D, Damsky CH, Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. Journal of cell science 1997; 110 ( Pt 4): 401-407. [
DOI:10.1242/jcs.110.4.401]
86. Parsons JT. Focal adhesion kinase: the first ten years. Journal of cell science 2003; 116(Pt 8): 1409-1416. [
DOI:10.1242/jcs.00373]
87. Xu Y, Liu F, Liu J, Wang D, Yan Y, Ji S, Zan J, Zhou J. The co-chaperone Cdc37 regulates the rabies virus phosphoprotein stability by targeting to Hsp90AA1 machinery. Scientific reports 2016; 6: 27123. [
DOI:10.1038/srep27123]
88. Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature reviews molecular cell biology 2010; 11(7): 515-528. [
DOI:10.1038/nrm2918]
89. Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes and development 1996; 10(12): 1491-1502. [
DOI:10.1101/gad.10.12.1491]
90. Jackson AC, Kammouni W, Zherebitskaya E, Fernyhough P. Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. Journal of virology 2010; 84(9): 4697-4705. [
DOI:10.1128/JVI.02654-09]
91. Kammouni W, Wood H, Saleh A, Appolinario CM, Fernyhough P, Jackson AC. Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress. Journal for neurovirology 2015; 21(4): 370-382. [
DOI:10.1007/s13365-015-0320-8]
92. Komarova AV, Real E, Borman AM, Brocard M, England P, Tordo N, Hershey JW, Kean KM, Jacob Y. Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis. Nucleic acids research 2007; 35(5): 1522-1532. [
DOI:10.1093/nar/gkl1127]
93. Gholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, Obach D, Prevost MC, Jacob Y, Bourhy H. Mitochondrial dysfunction in lyssavirus-induced apoptosis. Journal of virology 2008; 82(10): 4774-4784. [
DOI:10.1128/JVI.02651-07]
94. Luco S, Delmas O, Vidalain PO, Tangy F, Weil R, Bourhy H. RelAp43, a member of the NF-kappaB family involved in innate immune response against Lyssavirus infection. PLoS Pathog 2012; 8(12): e1003060. [
DOI:10.1371/journal.ppat.1003060]
95. Harty RN, Paragas J, Sudol M, Palese P. A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. Journal of virology 1999; 73(4): 2921-2929. [
DOI:10.1128/JVI.73.4.2921-2929.1999]
96. Jayakar HR, Jeetendra E, Whitt MA. Rhabdovirus assembly and budding. Virus research 2004; 106(2): 117-132. [
DOI:10.1016/j.virusres.2004.08.009]
97. Versteeg GA, Garcia-Sastre A. Viral tricks to grid-lock the type I interferon system. Current opinion in microbioogy 2010; 13(4): 508-516. [
DOI:10.1016/j.mib.2010.05.009]
98. Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nature reviews immunology 2008; 8(7): 559-568. [
DOI:10.1038/nri2314]
99. Liu X, Li F, Zhang J, Wang L, Wang J, Wen Z, Wang Z, Shuai L, Wang X, Ge J, Zhao D, Bu Z. The ATPase ATP6V1A facilitates rabies virus replication by promoting virion uncoating and interacting with the viral matrix protein. Journal of biological chemistry 2020. 296: 100096. [
DOI:10.1074/jbc.RA120.014190]
100. Wang C, Zhao T, Li Y, Huang G, White MA, Gao J. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Advanced drug delivery reviews 2017; 113: 87-96. [
DOI:10.1016/j.addr.2016.08.014]
101. Breton S, Brown D. Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 2013; 28(5): 318-329. [
DOI:10.1152/physiol.00007.2013]
102. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature reviews molecular cell biology 2007; 8(11): 917-929. [
DOI:10.1038/nrm2272]
103. De Las Rivas J, Protein-protein interaction networks: unraveling the wiring of molecular Fontanillo C. machines within the cell. Briefings in functional genomics 2012; 11(6): 489-496. [
DOI:10.1093/bfgp/els036]
104. Mukhopadhyay A, Maulik U. Network-based study reveals potential infection pathways of hepatitis-C leading to various diseases. PLoS one 2014; 9(4): e94029. [
DOI:10.1371/journal.pone.0094029]
105. Yang S, Fu C, Lian X, Dong X, Zhang Z. Understanding human-virus protein-protein interactions using a human protein complex-based analysis framework. mSystems 2019; 4(2) [
DOI:10.1128/mSystems.00303-18]
106. Watanabe T, Kawakami E, Shoemaker JE, Lopes TJ, Matsuoka Y, Tomita Y, Kozuka-Hata H, Gorai T, Kuwahara T, Takeda E, Nagata A, Takano R, Kiso M, Yamashita M, Sakai-Tagawa Y, Katsura H, Nonaka N, Fujii H, Fujii K, Sugita Y, Noda T, Goto H, Fukuyama S, Watanabe S, Neumann G, Oyama M, Kitano H, Kawaoka Y. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell host and microbe 2014; 16(6): 795-805. [
DOI:10.1016/j.chom.2014.11.002]
107. Brito AF, Pinney JW. Protein-Protein Interactions in Virus-Host Systems. Frontiers in microbiology 2017; 8: 1557. [
DOI:10.3389/fmicb.2017.01557]
108. Terrien E, Chaffotte A, Lafage M, Khan Z, Prehaud C, Cordier F, Simenel C, Delepierre M, Buc H, Lafon M, Wolff N. Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN. Science signaling 2012; 5(237): ra58. [
DOI:10.1126/scisignal.2002941]
109. Wiltzer L, Larrous F, Oksayan S, Ito N, Marsh GA, Wang LF, Blondel D, Bourhy H, Jans DA, Moseley GW. Conservation of a unique mechanism of immune evasion across the Lyssavirus genus. Journal of virology 2012; 86(18): 10194-10199. [
DOI:10.1128/JVI.01249-12]