Volume 25, Issue 2 (3-2021)                   IBJ 2021, 25(2): 99-105 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javidpou M, Seifati S, Farashahi-Yazd E, Hajizadeh-Tafti F, Golzadeh J, Akyash F et al . Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles. IBJ 2021; 25 (2) :99-105
URL: http://ibj.pasteur.ac.ir/article-1-3306-en.html
Abstract:  
Background: Human embryonic stem cell-mesenchymal stem/stromal cell (hESCs-MSCs) open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by immunofluorescence technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using reverse transcription-polymerase chain reaction technique. Fluorescence-activated cell sorting was performed for CD44, CD73, CD90, and CD105 markers. Moreover, these fibroblast-like cells, due to multipotent characteristics, differentiated to the osteoblast. Results: MSCs were derived from diploid and triploid hESC lines using sequential three dimensional and two dimensional cultures and characterized with the specific markers. Immunofluorescence showed the expression of FIBRONECTIN and CD105 in hESCs-MSCs. Flow cytometry data indicated no significant difference in the expression of MSC markers after 6 and 13 passages. Interestingly, gene expression profiles revealed slight differences between MSCs from diploid and triploid hESCs. hESCs-MSCs displayed osteogenic differentiation capacity, which was confirmed by Alizarin red staining. Conclusion: Our findings reveal that both diploid and triploid hESC lines are capable of forming MSCs; however, there are some differences in their gene expression profiles. Generation of MSCs from hESCs, as a non-invasive procedure in large scale, will lend itself for the future cell-based therapeutic applications.

References
1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Watknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-1147. [DOI:10.1126/science.282.5391.1145]
2. Omidi M, Aflatoonian B, Tahajjodi SS, Khalili MA. Attempts for generation of embryonic stem cells from human embryos following in vitro embryo twinning. Stem cells and development 2019; 28(5): 303-309. [DOI:10.1089/scd.2018.0168]
3. Akyash F, Tahajjodi SS, Farashahi Yazd E, Hajizadeh-Tafti F, Sadeghian-Nodoushan F, Golzadeh J, Heidarian Meimandi H, Moore H, Aflatoonian B. Derivation of new human embryonic stem cell lines (Yazd1-3) and their vitrification using cryotech and cryowin tools. International journal of reproductive biomedicine 2019; 17(12): 891-907. [DOI:10.18502/ijrm.v17i12.5808]
4. Chen X, Luo Y, Fan Y, Yue L, Wu X, Chen Y, Sun X. Triploid and diploid embryonic stem cell lines derived from tripronuclear human zygotes. Journal of assisted reproduction and genetics 2012; 29(8): 713-721. [DOI:10.1007/s10815-012-9764-4]
5. Rungsiwiwut R, Numchaisrika P, Ahnonkitpanit V, Virutamasen P, Pruksananonda K. Triploid human embryonic stem cells derived from tripronuclear zygotes displayed pluripotency and trophoblast differentiation ability similar to the diploid human embryonic stem cells. Journal of reproduction and development 2016; 62(2): 167-176. [DOI:10.1262/jrd.2015-113]
6. Sun X, Long X, Yin Y, Jiang Y, Chen X, Liu W, Zhang W, Du H, Li S, Zheng Y, Kong S, Pang Q, Shi Y, Huang Y, Huang S, Liao B, Xiao G, Wang, W. Similar biological characteristics of human embryonicstem cell lines with normal and abnormal Karyotypes. Human reproduction 2008; 23(10): 2185-2193. [DOI:10.1093/humrep/den137]
7. Akyash F, Javidpou M, Sadeghian Nodoushan F, Aflatoonian B. Human embryonic stem cells derived mesenchymal stem/stromal cells and their use in regenerative medicine. Journal of stem cell research and therapeutics 2016; 1(7): 00047. [DOI:10.15406/jsrt.2016.01.00047]
8. Lian Q, Lye E, Suan Yeo KS, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, Menshawe El Oakley R, Hin Lee E, Lim B, Lim SK. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem cells 2007; 25(2): 425-436. [DOI:10.1634/stemcells.2006-0420]
9. Lee EJ, Lee HN, Kang HJ, Kim KH, Hur J, Cho HJ, Lee J, Chung HM, Cho J, Cho MY, Oh SK, Moon SY, Park YB, Kim, HS. Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells. Tissue engineering part A 2010; 16(2): 705-715. [DOI:10.1089/ten.tea.2008.0596]
10. Yan L, Jiang B, Li E, Wang X, Ling Q, Zheng D, Park JW, Chen X, Chung E, Du X, Li Y, Cheng G, He E, Xu RH. Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D. International journal of biological sciences 2018; 14(10): 1196-1210. [DOI:10.7150/ijbs.25023]
11. Akyash F, Sadeghian-Nodoushan F, Tahajjodi SS, Nikukar H, Farashahi Yazd E, Azimzadeh M, Moore HD, Aflatoonian B. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April. International journal of reproductive biomedicine 2017; 15(5): 255-256. [DOI:10.29252/ijrm.15.5.255]
12. Sadeghian-Nodoushan F, Aflatoonian R, Borzouie Z, Akyash F, Fesahat F, Soleimani M, Aghajanipour S, Moore HD, Aflatoonian B. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Molecular reproduction and development 2016; 83(4): 312-323. [DOI:10.1002/mrd.22620]
13. Dabelsteen S, Hercule P, Barron P, Rice M, Dorsainville G, Rheinwald JG. Epithelial cells derived from human embryonic stem cells display p16INK4A senescence, hypermotility, and differentiation properties shared by many P63+ somatic cell types. Stem cells 2009; 27(6):1388-1399. [DOI:10.1002/stem.64]
14. Gadkari R, Zhao L, Teklemariam T, Hantash BM. Human embryonic stem cell derived-mesenchymal stem cells: an alternative mesenchymal stem cell source for regenerative medicine therapy. Regenerative medicine 2014; 9(4): 453-465. [DOI:10.2217/rme.14.13]
15. Trivedi P, Hematti P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Experimental hematology 2008; 36(3): 350-359. [DOI:10.1016/j.exphem.2007.10.007]
16. Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLos medicine 2005; 2(6): e161. [DOI:10.1371/journal.pmed.0020161]
17. Sharma P, Bolten ZT, Wagner DR, Hsieh AH. Deformability of human mesenchymal stem cells is dependent on vimentin intermediate filaments. Annals of biomedical engineering 2017; 45(5):1365-1374. [DOI:10.1007/s10439-016-1787-z]
18. Kundrotas G. Surface markers distinguishing mesenchymal stem cells from fibroblasts. Acta medica lituanica 2012; 19(2): 75-79. [DOI:10.6001/actamedica.v19i2.2313]
19. Li E, Zhang Z, Jiang B, Yan L, Park JW, Xu RH. Generation of mesenchymal stem cells from human embryonic stem cells in a complete serum-free condition. International journal of biological sciences 2018; 14(3):1901-1909. [DOI:10.7150/ijbs.25306]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb