Volume 25, Issue 5 (9-2021)                   IBJ 2021, 25(5): 374-379 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahangari N, Sahebkar A, Azimi-Nezhad M, Ghazizadeh H, Moohebati M, Ebrahimi M, et al . A Novel Splice Site Variant in the LDLRAP1 Gene Causes Familial Hypercholesterolemia. IBJ 2021; 25 (5) :374-379
URL: http://ibj.pasteur.ac.ir/article-1-3251-en.html
Abstract:  
Background: familial hypercholesterolemia (FH), a hereditary disorder, is caused by pathogenic variants in the LDLR, APOB, and PCSK9 genes. This study has assessed genetic variants in a family, clinically diagnosed with FH. Methods: A family was recruited from MASHAD study in Iran with possible FH based on the Simon Broom criteria. The DNA sample of an affected individual (proband) was analyzed using whole exome sequencing, followed by bioinformatics and segregation analyses. Results: A novel splice site variant (c.345-2A>G) was detected in the LDLRAP1 gene, which was segregated in all affected family members. Moreover, HMGCR rs3846662 g.23092A>G was found to be homozygous (G/G) in the proband, probably leading to reduced response to simvastatin and pravastatin. Conclusion: LDLRAP1 c.345-2A>G could alter the phosphotyrosine-binding domain, which acts as an important part of biological pathways related to lipid metabolism.
Type of Study: Case Report | Subject: Molecular Genetics & Genomics

References
1. Humphries SE, Cranston T, Allen M, Middleton-Price H, Fernandez MC, Senior V, Hawe E, Iversen A, Wray R, Crook MA, Wierzbicki AS. Mutational analysis in UK patients with a clinical diagnosis of familial hypercholesterolaemia: relationship with plasma lipid traits, heart disease risk and utility in relative tracing. Journal of molecular medicine 2006; 84(3): 203-214. [DOI:10.1007/s00109-005-0019-z]
2. Hopkins PN. Encouraging appropriate treatment for familial hypercholesterolemia. Clinical lipidology 2010; 5(3): 339-354. [DOI:10.2217/clp.10.22]
3. Hopkins PN, Toth PP, Ballantyne CM, Rader DJ. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. Journal of clinical lipidology 2011; 5(3): S9-S17. [DOI:10.1016/j.jacl.2011.03.452]
4. DeMott K, Nherera L, Shaw E, Minhas R, Humphries S, Kathoria M, Ritchie G, Nunes V, Davies D, Lee P, McDowell I, Neil A, Qureshi N, Rowlands P, Seed M, Stracey H, Thorogood M, Watson M. Clinical Guidelines and Evidence Review for Familial Hypercholesterolaemia: The identification and management of adults and children with familial hypercholesterolaemia. 2008. London: National Collaborating Centre for Primary Care and Royal College of General Practitioners. Retreived from: http://www.sefap.it/servizi_lineeguida_200809/CG071FullGuideline.pdf
5. Goldstein JL, Brown MS. The LDL receptor. Arteriosclerosis, thrombosis, and vascular biology 2009; 29(4): 431-438. [DOI:10.1161/ATVBAHA.108.179564]
6. Ahmad Z, Adams-Huet B, Chen C, Garg A. Low prevalence of mutations in known loci for autosomal dominant hypercholesterolemia in a multi-ethnic patient cohort. Circulation: cardiovascular genetics 2012; 5(6): 666-675. [DOI:10.1161/CIRCGENETICS.112.963587]
7. K, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, Calandra S, Bertolini S, Cossu F, Grishin N, Barnes R, Cohen JC, Hobbs HH. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001; 292(5520): 1394-1398. [DOI:10.1126/science.1060458]
8. Harada K, Miyamoto Y, Morisaki H, Ohta N, Yamanaka I, Kokubo Y, Makino H, Harada-Shiba M, Okayama A, Tomoike H. A novel Thr56Met mutation of the autosomal recessive hypercholesterolemia gene associated with hypercholesterolemia. Journal of atherosclerosis and thrombosis 2010 ; 17(2): 131-140. [DOI:10.5551/jat.2873]
9. Ghayour-Mobarhan M, Moohebati M, Esmaily H, Ebrahimi M, Parizadeh SMR, Heidari-Bakavoli AR, Safarian M, Mokhber N, Nematy M, Saber H, Mohammadi M, Andalibi MS, Ferns GA, Azarpazhooh MR. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. International journal of public health 2015; 60(5): 561-572. [DOI:10.1007/s00038-015-0679-6]
10. Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. The American Journal of Human Genetics 2017; 100(2): 267-280. [DOI:10.1016/j.ajhg.2017.01.004]
11. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Aguilera MA, Meyer R, Massouras A. VarSome: The human genomic variant search engine. Bioinformatics 2019; 35(11): 1978-1980. [DOI:10.1093/bioinformatics/bty897]
12. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic acids research 2009; 37(9): e67. [DOI:10.1093/nar/gkp215]
13. Scientific Steering Committee on behalf of the Simon Broome Register Group. Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Atherosclerosis 1999; 142(1): 105-112. [DOI:10.1016/S0021-9150(98)00200-7]
14. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine 2015; 17(5): 405-423 [DOI:10.1038/gim.2015.30]
15. Nieminen T, Kähönen M, Viiri LE, Grönroos P, Lehtimäki T. Pharmacogenetics of apolipoprotein E gene during lipid-lowering therapy: lipid levels and prevention of coronary heart disease. Pharmacogenomis 2008; 9(10):1475-86. [DOI:10.2217/14622416.9.10.1475]
16. Taghizadeh E, Mirzaei F, Jalilian N, Ghayour Mobarhan M, Ferns GA, Pasdar A. A novel mutation in USF1 gene is associated with familial combined hyperlipidemia. IUBMB life 2019; 72(4): 616-623 [DOI:10.1002/iub.2186]
17. Taghizadeh E, Ghayour‐Mobarhan M, Ferns GA, Pasdar A. A novel variant in LPL gene is associated with familial combined hyperlipidemia. Biofactors 2020; 46(1): 94-99. [DOI:10.1002/biof.1570]
18. Dvir H, Shah M, Girardi E, Guo L, Farquhar MG, Zajonc DM. Atomic structure of the autosomal recesive hypercholesterolemia phosphotyrosine-binding domain in complex with the LDL-receptor tail. Proceedings of the National Academy of Sciences of the United States of America 2012; 109(18): 6916-6921. [DOI:10.1073/pnas.1114128109]
19. Canizales-Quinteros S, Aguilar-Salinas CA, Huertas-Vázquez A, Ordóñez-Sánchez ML, Rodríguez-Torres M, Venturas-Gallegos JL, Riba L, Ramírez-Jimenez S, Salas-Montiel R, Medina-Palacios G, Robles-Osorio L, Miliar-García A, Miliar-García A, Rosales-León L, Ruiz-Ordaz BH, Zentella-Dehesa A, Ferré-D'Amare A, Gómez-Pérez FJ, Tusié-Luna MT. A novel ARH splice site mutation in a Mexican kindred with autosomal recessive hypercholesterolemia. Human genetics 2005; 116(1-2):114-120. [DOI:10.1007/s00439-004-1192-9]
20. Thedrez A, Sjouke B, Passard M, Prampart-Fauvet S, Guédon A, Croyal M, Dallinga-Thie G, Peter J, Blom D, Ciccarese M, Cefalù AB, Pisciotta L, Santos RD, Averna M, Raal F, Pintus P, Cossu M, Hovingh K, Lambert G. Proprotein convertase subtilisin kexin
21. type 9 inhibition for autosomal recessive hyper-cholesterolemia-brief report. Arteriosclerosis, thrombosis, and vascular biology 2016; 36(8): 1647-1650. [DOI:10.1161/ATVBAHA.116.307493]
22. Burkhardt R, Kenny EE, Lowe JK, Birkeland A, Josowitz R, Noel M, Salit J, Maller JB, Pe'er I, Daly MJ, Altshuler D, Stoffel M, Friedman JM, Breslow JL. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arteriosclerosis, thrombosis, and vascular biology 2008; 28(11): 2078-2084. [DOI:10.1161/ATVBAHA.108.172288]
23. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302(5653): 2141-2144. [DOI:10.1126/science.1090100]
24. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 2001; 292(5519): 1160-1164. [DOI:10.1126/science.1059344]
25. Yu C-Y, Theusch E, Lo K, Mangravite LM, Naidoo D, Kutilova M, Medina MW. HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism. Human molecular genetics 2014; 23(2):319-322. [DOI:10.1093/hmg/ddt422]
26. Chung JY, Cho SK, Oh ES, Lee DH, Lim LA, Jang SB, Lee YJ, Park K, Park MS. Effect of HMGCR variant alleles on low‐density lipoprotein cholesterol-lowering response to atorvastatin in healthy korean subjects. Journal of clinical pharmacology 2012; 52(3): 339-346. [DOI:10.1177/0091270011398239]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb