Volume 25, Issue 3 (5-2021)                   IBJ 2021, 25(3): 140-156 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Simonian M, Haji Ghaffari M, Negahdari B. Immunotherapy for Breast Cancer Treatment. IBJ 2021; 25 (3) :140-156
URL: http://ibj.pasteur.ac.ir/article-1-3201-en.html
Abstract:  
Breast cancer, as a heterogeneous disease, includes a wide range of pathological and clinical behaviors. Current treatment protocols, including radiotherapy, chemotherapy, and hormone replacement therapy, are mainly associated with poor response and high rate of recurrence. Therefore, more efforts are needed to develop alternative therapies for this type of cancer. Immunotherapy, as a novel strategy in cancer treatment, has a potential in treating breast cancer patients.  Although breast cancer has long been considered problematic to treat with immunotherapy, as it is immunologically "cold," numerous newer preclinical and clinical reports now recommend that immunotherapy has the capability to treat breast cancer patients. In this review, we highlight the different immunotherapy strategies in breast cancer treatment.
Type of Study: Review Article | Subject: Related Fields

References
1. Al Tamimi DM, Shawarby MA, Ahmed A, Hassan AK, AlOdaini AA. Protein expression profile and prevalence pattern of the molecular classes of breast cancer-a Saudi population based study. BMC cancer 2010; 10(1): Article number 223. [DOI:10.1186/1471-2407-10-223]
2. Stewart BW, Wild CP. World Cancer Report 2014. France: International agency for research on cancer world health organization (IARC); 2014.
3. Pisani P, Parkin D, Ferlay J. Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. International journal of cancer 1993; 55(6): 891-903. [DOI:10.1002/ijc.2910550604]
4. Parkin DM. Cancer Incidence in Five Continents. France: International agency for research on cancer world health organization (IARC); 1997.
5. Taghavi A, Fazeli Z, Vahedi M, Baghestani AR, Pourhoseingholi A, Barzegar F, Pourhoseingholi MA. Increased trend of breast cancer mortality in Iran. Asian pacific journal of cancer prevention 2012; 13(1): 367-370. [DOI:10.7314/APJCP.2012.13.1.367]
6. Yavari P, Mosavizadeh M, Sadrol-Hefazi B, Mehrabi Y. Reproductive characteristics and the risk of breast cancer--a case-control study in Iran. Asian pacific journal of cancer prevention 2005; 6(3): 370-375.
7. Makki J. Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clinical medicine insights: Pathology 2015; 8: 23-31. [DOI:10.4137/CPath.S31563]
8. Perou CM, Sørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-752. [DOI:10.1038/35021093]
9. American Cancer Society. Breast Cancer Facts and Figures 2019-2020. Reterieved from: https://www. cancer.org/content/dam/cancer-org/research/cancer-facts -and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019-2020.pdf.
10. Cserni G. Histological type and typing of breast carcinomas and the WHO classification changes over time. Pathologica-journal of the italian society of anatomic pathology and diagnostic cytopathology 2020; 112(1): 25-41. [DOI:10.32074/1591-951X-1-20]
11. Howlader N, Cronin KA, Kurian AW, Andridge R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer epidemiology and prevention biomarkers 2018; 27(6): 619-626. [DOI:10.1158/1055-9965.EPI-17-0627]
12. Parise CA, Caggiano V. Risk of mortality of node-negative, ER/PR/HER2 breast cancer subtypes in T1, T2, and T3 tumors. Breast cancer research and treatment 2017; 165(3): 743-750. [DOI:10.1007/s10549-017-4383-5]
13. Sharma P. Biology and management of patients with triple-negative breast cancer. The oncologist 2016; 21(9): 1050-1062. [DOI:10.1634/theoncologist.2016-0067]
14. Plevritis SK, Munoz D, Kurian AW, Stout NK, Alagoz O, Near AM, Lee SJ, Van Den Broek JJ, Huang X, Schechter CB, Sprague BL, Song J, de Koning HJ, Trentham-Dietz A, van Ravesteyn NT, Gangnon R, Chandler Y, Li Y, Xu C, Ergun MA, Huang H, Berry DA, Mandelblatt JS. Association of screening and treatment with breast cancer mortality by molecular subtype in US women. JAMA 2018; 319(2): 154-164. [DOI:10.1001/jama.2017.19130]
15. Wolff AC, Tung NM, Carey LA. Implications of neoadjuvant therapy in human epidermal growth factor receptor 2-positive breast cancer. American society of clinical oncology 2019; 37(25): 2189-2192. [DOI:10.1200/JCO.19.01159]
16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation Cell 2011; 144(5): 646-674. [DOI:10.1016/j.cell.2011.02.013]
17. Swoboda A, Nanda R. Immune checkpoint blockade for breast cancer. Optimizing breast cancer management Cancer treatment and research 2018; 173: 155-165. [DOI:10.1007/978-3-319-70197-4_10]
18. Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, Primeau T, Myers N, Vickery TL, Sturmoski M, Hagemann IS, Miller CA, Ellis MJ, Mardis ER, Hansen T, Fleming TP, Goedegebuure SP, Gillanders WE. Breast cancer neoantigens can induce CD8+ T-cell responses and antitumor immunity. Cancer immunology research 2017; 5(7): 516-523. [DOI:10.1158/2326-6066.CIR-16-0264]
19. Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast cancer 2019; 11: 53-69. [DOI:10.2147/BCTT.S175360]
20. Shin SU, Lee J, Kim JH, Kim WH, Song SE, Chu A, Kim HS, Han W, Ryu HS, Moon WK. Gene expression profiling of calcifications in breast cancer. Scientific reports 2017; 7: 427. [DOI:10.1038/s41598-017-11331-9]
21. Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. International journal of hyperthermia 2014; 30(8): 531-539. [DOI:10.3109/02656736.2014.968640]
22. Yagawa Y, Tanigawa K, Kobayashi Y, Yamamoto M. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. Journal cancer metastasis treatment 2017; 3(10): 218-230. [DOI:10.20517/2394-4722.2017.35]
23. Zagar TM, Oleson JR, Vujaskovic Z, Dewhirst MW, Craciunescu OI, Blackwell KL, Prosnitz LR, Jones EL. Hyperthermia for locally advanced breast cancer. International journal of hyperthermia 2010; 26(7): 618-624. [DOI:10.3109/02656736.2010.501051]
24. Mostafa AA, Codner D, Hirasawa K, Komatsu Y, Young MN, Steimle V, Drover S. Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells. PLoS one 2014; 9(1): e87377. [DOI:10.1371/journal.pone.0087377]
25. Pietras RJ. Interactions between estrogen and growth factor receptors in human breast cancers and the tumor‐associated vasculature. The breast journal 2003; 9(5): 361-373. [DOI:10.1046/j.1524-4741.2003.09510.x]
26. Hühn D, Martí-Rodrigo P, Mouron S, Hansel C, Tschapalda K, Haggblad M, Lidemalm L, Quintela-Fandino MA, Carreras-Puigvert J, Fernandez-Capetillo O. Estrogen deprivation triggers an immunosuppressive phenotype in breast cancer cells. bioRxiv 2019; doi: https://doi.org/10.1101/715136 [DOI:10.1101/715136.]
27. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clinical cancer research 1999; 5(10): 2963-2970.
28. Hahn T, Akporiaye E. Targeting transforming growth factor β to enhance cancer immunotherapy. Current oncology 2006; 13(4): 141-143. [DOI:10.3390/curroncol13040015]
29. Peddi PF, Hurvitz SA. Trastuzumab emtansine: the first targeted chemotherapy for treatment of breast cancer. Future oncology 2013; 9(3): 319-326. [DOI:10.2217/fon.13.7]
30. Mavratzas A, Seitz J, Smetanay K, Schneeweiss A, Jäger D, Fremd C. Atezolizumab for use in PD-L1-positive unresectable, locally advanced or metastatic triple-negative breast cancer. Future oncology 2020; 16(3): 4439-4453. [DOI:10.2217/fon-2019-0468]
31. García-Aranda M, Redondo M. Targeting protein kinases to enhance the response to anti-PD-1/PD-l1 immunotherapy. International journal of molecular sciences 2019; 20(9): 2296. [DOI:10.3390/ijms20092296]
32. García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 inhibition to overcome resistance to chemo-and immunotherapy. International journal of molecular sciences 2018; 19(12): 3950. [DOI:10.3390/ijms19123950]
33. García-Aranda M, Redondo M. Protein kinase targets in breast cancer. International journal of molecular sciences 2017; 18(12): 2543. [DOI:10.3390/ijms18122543]
34. Lee HJ, Song IH, Park IA, Heo SH, Kim YA, Ahn JH, Gong G. Differential expression of major histocompatibility complex class I in subtypes of breast cancer is associated with estrogen receptor and interferon signaling. Oncotarget 2016; 7(21): 30119-30132. [DOI:10.18632/oncotarget.8798]
35. Redondo M, Garcı́a J, Villar E, Rodrigo I, Perea-Milla E, Serrano A, Morell M. Major histocompatibility complex status in breast carcinogenesis and relationship to apoptosis. Human pathology 2003; 34(12): 1283-1289. [DOI:10.1016/j.humpath.2003.06.001]
36. Makhoul I, Atiq M, Alwbari A, Kieber-Emmons T. Breast cancer immunotherapy: An update. Breast cancer (Auckland) 2018; 12: 1178223418774802. [DOI:10.1177/1178223418774802]
37. Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-II expression by tumor cells in cancer. Clinical cancer research 2019; 25(8): 2392-2402. [DOI:10.1158/1078-0432.CCR-18-3200]
38. Forero A, Li Y, Chen D, Grizzle WE, Updike KL, Merz ND, Downs-Kelly E, Burwell TC, Vaklavas C, Buchsbaum DJ, Myers RM, LoBuglio AF, Varley KE. Expression of the MHC class II pathway in triple-negative breast cancer tumor cells is associated with a good prognosis and infiltrating lymphocytes. Cancer immunology research 2016; 4(5): 390-399. [DOI:10.1158/2326-6066.CIR-15-0243]
39. Chaganty BK, Lu Y, Qiu S, Somanchi SS, Lee DA, Fan Z. Trastuzumab upregulates expression of HLA-ABC and T cell costimulatory molecules through engagement of natural killer cells and stimulation of IFN-γ secretion. Oncoimmunology 2016; 5(4): e1100790. [DOI:10.1080/2162402X.2015.1100790]
40. Inoue M, Mimura K, Izawa S, Shiraishi K, Inoue A, Shiba S, Watanabe M, Maruyama T, Kawaguchi Y, Inoue S, Kawasaki T, Choudhury A, Katoh R, Fujii H, Kiessling R, Kono K. Expression of MHC class I
41. on breast cancer cells correlates inversely with
42. HER2 expression. Oncoimmunology 2012; 1(7): 1104-1110 . [DOI:10.4161/onci.21056]
43. Makhoul I. Therapeutic Strategies for Breast Cancer. In: Bland K. I., Copeland E. M., Klimberg V. S., Gradishar W. J., editors. The Breast; the Netherland: Elsevier: 2018. p. 315-330. [DOI:10.1016/B978-0-323-35955-9.00024-6]
44. Tao JJ, Visvanathan K, Wolff AC. Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast 2015; 24 Suppl 2(0 2): S149-S153. [DOI:10.1016/j.breast.2015.07.035]
45. Couzin-Frankel J. Cancer immunotherapy. Science 2013; 342(6165): 1432-1433. [DOI:10.1126/science.342.6165.1432]
46. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. The oncologist 2004; 9 Suppl 1: 2-10. [DOI:10.1634/theoncologist.9-suppl_1-2]
47. Bertrand A, Kostine M, Barnetche T, Truchetet ME, Schaeverbeke T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC medicine 2015; 13: 211. [DOI:10.1186/s12916-015-0455-8]
48. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA‐4 and PD‐1 blockade as cancer immunotherapy. Journal of leukocyte biology 2013; 94(1): 25-39. [DOI:10.1189/jlb.1212621]
49. Muenst S, Soysal S, Gao F, Obermann E, Oertli D, Gillanders W. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast cancer research and treatment 2013; 139(3): 667-676. [DOI:10.1007/s10549-013-2581-3]
50. Qin T, Zeng YD, Qin G, Xu F, Lu JB, Fang WF, Xue C, Zhan JH, Zhang XK, Zheng QF, Peng RJ, Yuan ZY, Zhang L, Wang SS. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget 2015; 6(32): 33972-33981. [DOI:10.18632/oncotarget.5583]
51. Sun WY, Lee YK, Koo JS. Expression of PD-L1 in triple-negative breast cancer based on different immunohistochemical antibodies. Journal of translational medicine 2016; 14(1): 173. [DOI:10.1186/s12967-016-0925-6]
52. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, Buisseret L. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib keynote-012 study. Journal of Clinical oncology 2016; 34(21): 2460. [DOI:10.1200/JCO.2015.64.8931]
53. Adams S, Diamond JR, Hamilton EP, Pohlmann PR, Tolaney SM, Molinero L, He X, Waterkamp D, Funke R, Powderly J. Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). Journal of clinical oncology 2016; 34(Suppl): abstr 1009. [DOI:10.1200/JCO.2016.34.15_suppl.1009]
54. Apolo AB, Infante JR, Hamid O, Patel M, Wang D, Kelly K, Mega A, Britten CD, Mita A, Ravaud A, Cuillerto JM, Von Heydebreck A, Gulley JL. 2630 Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with locally advanced or metastatic urothelial carcinoma: a phase Ib trial. European journal of cancer 2015; 51(3): S522. [DOI:10.1016/S0959-8049(16)31447-2]
55. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013; 39(1): 38-48. [DOI:10.1016/j.immuni.2013.07.004]
56. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161(2): 205-214. [DOI:10.1016/j.cell.2015.03.030]
57. Criscitiello C. Tumor-associated antigens in breast cancer. Breast care 2012; 7(4): 262-266. [DOI:10.1159/000342164]
58. Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, Zhang P, Koski G, Czerniecki BJ. HER‐2 pulsed dendritic cell vaccine can eliminate HER‐2 expression and impact ductal carcinoma in situ. Cancer 2012; 118(17): 4354-4362. [DOI:10.1002/cncr.26734]
59. Heery CR, Ibrahim NK, Arlen PM, Mohebtash M, Murray JL, Koenig K, Madan RA, McMahon S, Marté JL, Steinberg SM, Donahue RN, Grenga I, Jochems C, Farsaci B, Folio LR, Schlom J, Gulley JL. Docetaxel alone or in combination with a therapeutic cancer vaccine (PANVAC) in patients with metastatic breast cancer: a randomized clinical trial. JAMA oncology 2015; 1(8): 1087-1095. [DOI:10.1001/jamaoncol.2015.2736]
60. Nemunaitis J. Vaccines in cancer: GVAX®, a Gv M-CSF gene vaccine. Expert review of vaccines 2005; 4(3): 259-274. [DOI:10.1586/14760584.4.3.259]
61. Datta J, Terhune JH, Lowenfeld L, Cintolo JA, Xu S, Roses RE, Czerniecki BJ. Optimizing dendritic cell-based approaches for cancer immunotherapy. The yale journal of biology and medicine 2014; 87(4): 491-518.
62. Vasir B, Wu Z, Crawford K, Rosenblatt J, Zarwan C, Bissonnette A, Kufe D, Avigan D. Fusions of dendritic cells with breast carcinoma stimulate the expansion of regulatory T cells while concomitant exposure to IL-12, CpG oligodeoxynucleotides, and anti-CD3/CD28 promotes the expansion of activated tumor reactive cells. The Journal of immunology 2008; 181(1): 808-821. [DOI:10.4049/jimmunol.181.1.808]
63. de Paula Peres L, da Luz FAC, dos Anjos Pultz B, Brígido PC, de Araújo RA, Goulart LR, Silva MJB. Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnology advances 2015; 33(8): 1868-1877. [DOI:10.1016/j.biotechadv.2015.10.013]
64. Slingluff CL Jr. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer journal 2011; 17(5): 343-350. [DOI:10.1097/PPO.0b013e318233e5b2]
65. Mitchison N. Studies on the immunological response to foreign tumor transplants in the mouse I. The role of lymph node cells in conferring immunity by adoptive transfer. Journal of experimental medicine 1955; 102(2): 157-177. [DOI:10.1084/jem.102.2.157]
66. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. Journal of immunotherapy 2003; 26(4): 332-342. [DOI:10.1097/00002371-200307000-00005]
67. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. Journal for immunotherapy of cancer 2016; 4(1): 59. [DOI:10.1186/s40425-016-0165-6]
68. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T‐cell immunotherapy for human cancer. American journal of hematology 2019; 94(1): 3-9. [DOI:10.1002/ajh.25418]
69. Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Disease models and mechanisms 2015; 8(4): 337-350. [DOI:10.1242/dmm.018036]
70. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nature reviews cancer 2016; 16(9): 566-581. [DOI:10.1038/nrc.2016.97]
71. Lee HJ, Kim JY, Song IH, Park IA, Yu JH, Gong G. Expression of NY-ESO-1 in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and a good prognosis. Oncology 2015; 89(6): 337-344. [DOI:10.1159/000439535]
72. Chandran S, Ma J, Klatt MG, Dündar F, Zumbo P, Femia MR, Betel D, Scheinberg DA, Baker BM, Klebanoff CA. (2019, October 25-28). Abstract CN01-03: T cell receptor gene therapy for a public neoantigen derived from mutated PIK3CA, a dominant driver oncogene in breast and endometrial cancers [Conference presentation abstract]. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA, United States. [DOI:10.1158/1535-7163.TARG-19-CN01-03]
73. Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Molecular therapy-oncolytics 2016; 3: 16006. [DOI:10.1038/mto.2016.6]
74. Posey Jr AD, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016; 44(6): 1444-1454. [DOI:10.1016/j.immuni.2016.05.014]
75. Song DG, Ye Q, Poussin M, Chacon JA, Figini M, Powell DJ. Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. Journal of hematology and oncology 2016; 9(1): 56. [DOI:10.1186/s13045-016-0285-y]
76. Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira ACP, Burbridge SE, Box C, Eccles SA, Maher J. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. Journal of clinical immunology 2012; 32(5): 1059-1070. [DOI:10.1007/s10875-012-9689-9]
77. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clinical cancer research 2011; 17(13): 4550-4557. [DOI:10.1158/1078-0432.CCR-11-0116]
78. Moreno Ayala MA, Gottardo MF, Asad AS, Zuccato C, Nicola A, Seilicovich A, Candolfi M. Immunotherapy for the treatment of breast cancer. Expert opinion on biological therapy 2017; 17(7): 797-812. [DOI:10.1080/14712598.2017.1324566]
79. Fiszman GL, Jasnis MA. Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer. International journal of breast cancer 2011; 2011:352182. [DOI:10.4061/2011/352182]
80. Munagala R, Aqil F, Gupta RC. Promising molecular targeted therapies in breast cancer. Indian journal of pharmacology 2011; 43(3): 236-245. [DOI:10.4103/0253-7613.81497]
81. Gu G, Dustin D, Fuqua SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Current opinion in pharmacology 2016; 31: 97-103. [DOI:10.1016/j.coph.2016.11.005]
82. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S,
83. Ma CX, Ding L, Mardis ER, Ellis MJ. Activating
84. HER2 mutations in HER2 gene amplification
85. negative breast cancer. Cancer discovery 2013; 3(2): 224-237. [DOI:10.1158/2159-8290.CD-12-0349]
86. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, Narasanna A, Chakrabarty A, Hilsenbeck SG, Huang J, Rimawi M, Schiff R, Arteaga C, Osborne CK, Chang JC. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. Journal of clinical oncology 2011; 29(2): 166-173. [DOI:10.1200/JCO.2009.27.7814]
87. Wang Y, Liu Y, Du Y, Yin W, Lu J. The predictive role of phosphatase and tensin homolog (PTEN) loss, phosphoinositol-3 (PI3) kinase (PIK3CA) mutation, and PI3K pathway activation in sensitivity to trastuzumab in HER2-positive breast cancer: a meta-analysis. Current medical research and opinion 2013; 29(6): 633-642. [DOI:10.1185/03007995.2013.794775]
88. Kayl AE, Meyers CA. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current opinion in obstetrics and gynecology 2006; 18(1): 24-28. [DOI:10.1097/01.gco.0000192996.20040.24]
89. Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero J-M, Schneeweiss A, Heeson S, Clark E, Ross G, Benyunes MC, Cortés J, CLEOPATRA Study Group. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England journal of medicine 2015; 372(8): 724-734. [DOI:10.1056/NEJMoa1413513]
90. Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, Jeannin JF, Coudert B. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? British journal of cancer 2006; 94(2): 259-267. [DOI:10.1038/sj.bjc.6602930]
91. Hudis CA. Trastuzumab-mechanism of action and use in clinical practice. New England journal of medicine 2007; 357(1): 39-51. [DOI:10.1056/NEJMra043186]
92. Claret FX, Vu TT. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Frontiers in oncology 2012; 2: 62. [DOI:10.3389/fonc.2012.00062]
93. Rimawi MF, Wiechmann LS, Wang Y-C, Huang C, Migliaccio I, Wu M-F, Gutierrez C, Hilsenbeck SG, Arpino G, Massarweh S, Ward R, Soliz R, Osborne CK, Schiff R. Reduced dose and intermittent treatment with lapatinib and trastuzumab for potent blockade of the HER pathway in HER2/neu-overexpressing breast tumor xenografts. Clinical cancer research 2011; 17(6): 1351-1361. [DOI:10.1158/1078-0432.CCR-10-1905]
94. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A, Giordano SH, Goetz M, Goldstein LJ, Hudis CA, Isakoff SJ, Marcom PK, Mayer IA, McCormick B, Moran M, Patel SA, Pierce LJ, Reed EC, Salerno KE, Schwartzberg LS, Smith Kl, Smith ML, Soliman H, Somlo G, Telli M, Ward JH, Shead DA, Kumar R. NCCN guidelines insights breast cancer, version 1.2016. Journal of the national comprehensive cancer network 2015; 13(12): 1475-1485. [DOI:10.6004/jnccn.2015.0176]
95. Johnston SR. Enhancing endocrine therapy for hormone receptor-positive advanced breast cancer: cotargeting signaling pathways. Journal of the national cancer institute 2015; 107(10). [DOI:10.1093/jnci/djv212]
96. Krop IE, Mayer IA, Ganju V, Dickler M, Johnston S, Morales S, Yardley DA, Melichar B, Forero-Torres A, Lee SC, De Boer RH, Petrakova K, Vallentin S, Perez EA, Piccart M, Ellis M, Winer E, Gendreau S, Derynck M, Lackner M, Levy G, Qiu J, He J, Schmid P. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. The lancet oncology 2016; 17(6): 811-821. [DOI:10.1016/S1470-2045(16)00106-6]
97. Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O'Neill V, Rugo HS. RIBBON-2: A randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. Journal of clinical oncology 2011; 29(32): 4286-4293. [DOI:10.1200/JCO.2010.34.1255]
98. Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, Perez EA, Yardley DA, Chan SY, Zhou X, Phan SC, O'Shaughnessy J. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. Journal of clinical oncology 2011; 29(10): 1252-1260. [DOI:10.1200/JCO.2010.28.0982]
99. Baselga J, Costa F, Gomez H, Hudis CA, Rapoport B, Roche H, Schwartzberg LS, Petrenciuc O, Shan M, Gradishar WJ. A phase 3 tRial comparing capecitabinE in combination with SorafenIb or pLacebo for treatment of locally advanced or metastatIc HER2-Negative breast CancEr (the RESILIENCE study): study protocol for a randomized controlled trial. Trials 2013; 14(1): 228. [DOI:10.1186/1745-6215-14-228]
100. Mackey JR, Ramos-Vazquez M, Lipatov O, McCarthy N, Krasnozhon D, Semiglazov V, Manikhas A, Gelmon KA, Konecny GE, Webster M, Hegg R, Verma S, Gorbunova V, Abi Gerges D, Thireau F, Fung H, Simms L, Buyse M, Ibrahim A, Martin M. Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase III trial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer. Journal of clinical oncology: official journal of the american society of clinical oncology 2015; 33(2): 141-148. [DOI:10.1200/JCO.2014.57.1513]
101. Baselga J, Trigo JM, Bourhis J, Tortochaux J, Cortés-Funes H, Hitt R, Gascón P, Amellal N, Harstrick A, Eckardt A. Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. Journal of clinical oncology 2005; 23(24): 5568-5577. [DOI:10.1200/JCO.2005.07.119]
102. Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Liu MC, Storniolo AM, Rimawi MF, Forero-Torres A, Wolff AC, Hobday TJ, Ivanova A, Chiu WK, Ferraro M, Burrows E, Bernard PS, Hoadley KA, Perou CM, Winer EP. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. Journal of clinical oncology 2012; 30(21): 2615-2623. [DOI:10.1200/JCO.2010.34.5579]
103. Klein CA. Selection and adaptation during metastatic cancer progression. Nature 2013; 501(7467): 365-372. [DOI:10.1038/nature12628]
104. Roukos DH. Beyond HER2 and trastuzumab: heterogeneity, systems biology, and cancer origin research may guide the future for personalized treatment of very early but aggressive breast cancer. Journal of clinical oncology: official journal of the american society of clinical oncology 2010; 28(17): e279-280. [DOI:10.1200/JCO.2009.27.7061]
105. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. British journal of pharmacology 2009; 157(2): 220-233. [DOI:10.1111/j.1476-5381.2009.00190.x]
106. Barginear MF, John V, Budman DR. Trastuzumab-DM1: a clinical update of the novel antibody-drug conjugate for HER2-overexpressing breast cancer. Molecular medicine 2013; 18(1): 1473-1479. [DOI:10.2119/molmed.2012.00302]
107. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjugate chemistry 2010; 21(1): 5-13. [DOI:10.1021/bc9002019]
108. Senter PD. Potent antibody drug conjugates for cancer therapy. Current opinion in chemical biology 2009; 13(3): 235-344. [DOI:10.1016/j.cbpa.2009.03.023]
109. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clinical cancer research 2001; 7(6): 1490-1496.
110. Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, Matous J, Ramchandren R, Fanale M, Connors JM, Yang Y, Sievers EL, Kennedy DA, Shustov A. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. Journal of clinical oncology 2012; 30(18): 2190-2196. [DOI:10.1200/JCO.2011.38.0402]
111. Amiri-Kordestani L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, Weinberg WC, Chi B, Candau-Chacon R, Hughes P, Russell AM, Miksinski SP, Chen XH, McGuinn WD, Palmby T, Schrieber SJ, Liu Q, Wang J, Song P, Mehrotra N, Skarupa L, Clouse K, Al-Hakim A, Sridhara R, Ibrahim A, Justice R, Pazdur R, Cortazar P .FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clinical cancer research 2014; 20(17): 4436-4441. [DOI:10.1158/1078-0432.CCR-14-0012]
112. Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs 2017; 77(14): 1603-1610 [DOI:10.1007/s40265-017-0802-5]
113. Hurvitz SA, Kakkar R. The potential for trastuzumab emtansine in human epidermal growth factor receptor 2 positive metastatic breast cancer: latest evidence and ongoing studies. Therapeutic advances in medical oncology 2012; 4(5): 235-245. [DOI:10.1177/1758834012451205]
114. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J, Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. New England journal of medicine 2011; 365(14): 1273-1283. [DOI:10.1056/NEJMoa0910383]
115. Burris III HA, Tibbitts J, Holden SN, Sliwkowski MX, Phillips GDL. Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clinical breast cancer 2011; 11(5): 275-282. [DOI:10.1016/j.clbc.2011.03.018]
116. Phillips GDL, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer research 2008; 68(22): 9280-9290. [DOI:10.1158/0008-5472.CAN-08-1776]
117. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh D-Y, Diéras V, Guardino E, Fang L, Lu MW. Trastuzumab emtansine for HER2-positive advanced breast cancer. New England journal of medicine 2012; 367(19): 1783-1791. [DOI:10.1056/NEJMoa1209124]
118. Nakada T, Masuda T, Naito H, Yoshida M, Ashida S, Morita K, Miyazaki H, Kasuya Y, Ogitani Y, Yamaguchi J, Abe Y, Honda T. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorganic and medicinal chemistry letters 2016; 26(6): 1542-1545. [DOI:10.1016/j.bmcl.2016.02.020]
119. Ogitani Y, Abe Y, Iguchi T, Yamaguchi J, Terauchi T, Kitamura M, Goto K, Goto M, Oitate M, Yukinaga H, Yabe Y, Nakada T, Masuda T, Morita K, Agatsuma T. Wide application of a novel topoisomerase I inhibitor-based drug conjugation technology. Bioorganic & medicinal chemistry letters 2016; 26(20): 5069-5072 [DOI:10.1016/j.bmcl.2016.08.082]
120. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS‐8201a, a novel anti‐human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer science 2016; 107(7): 1039-1046. [DOI:10.1111/cas.12966]
121. Wethington SL, Wright JD, Herzog TJ. Key role of topoisomerase I inhibitors in the treatment of recurrent and refractory epithelial ovarian carcinoma. Expert review of anticancer therapy 2008; 8(5): 819-831. [DOI:10.1586/14737140.8.5.819]
122. Elgersma RC, Coumans RG, Huijbregts T, Menge WM, Joosten JA, Spijker HJ, de Groot FM, van der Lee MM, Ubink R, van den Dobbelsteen DJ, Egging DF, Dokter WH, Verheijden GF, Lemmens JM, Timmers CM, Beusker PH. Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody-drug conjugate SYD985. Molecular pharmaceutics 2015; 12(6): 1813-1835. [DOI:10.1021/mp500781a]
123. van der Lee MM, Groothuis PG, Ubink R, van der Vleuten MA, van Achterberg TA, Loosveld EM, Damming D, Jacobs DC, Rouwette M, Egging DF, van den Dobbelsteen D, Beusker PH, Goedings P, Verheijden GF, Lemmens JM, Timmers M, Dokter WH. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Molecular cancer therapeutics 2015; 14(3): 692-703. [DOI:10.1158/1535-7163.MCT-14-0881-T]
124. C Patil P, Satam V, Lee M. A short review on the synthetic strategies of duocarmycin analogs that are powerful DNA alkylating agents. Anti-Cancer agents in medicinal chemistry (formerly current medicinal chemistry-anti-cancer agents) 2015; 15(5): 616-630. [DOI:10.2174/1871520615666141216144116]
125. Ghosh N, Sheldrake HM, Searcey M, Pors K. Chemical and biological explorations of the family of CC-1065 and the duocarmycin natural products. Current topics in medicinal chemistry 2009; 9(16): 1494-1524. [DOI:10.2174/156802609789909812]
126. Zammarchi F, Chivers S, Williams DG, Adams L, Mellinas-Gomez M, Tyrer P, Corbett S, D'Hooge F, Dissanayake S, Sims S. ADCT-502, a novel pyrrolobenzodiazepine (PBD)-based antibody-drug conjugate (ADC) targeting low HER2-expressing solid cancers. European journal of cancer 2016; 69: 28. [DOI:10.1016/S0959-8049(16)32662-4]
127. Humphreys RC, Kirtely J, Hewit A, Biroc S, Knudsen N, Skidmore L, Wahl A. Site specific conjugation of ARX-788, an antibody drug conjugate (ADC) targeting HER2, generates a potent and stable targeted therapeutic for multiple cancers. AACR 2015; 75(15) [DOI:10.1158/1538-7445.AM2015-639]
128. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Hinrichs MJM, Bezabeh BZ, Fleming RL, Dimasi N, Feng H, Toader D, Yuan AQ, Xu L, Lin J, Gao C, Wu H, Dixit R, Osbourn JK, Coats SR. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer cell 2016; 29(1): 117-129. [DOI:10.1016/j.ccell.2015.12.008]
129. Thompson P, Fleming R, Bezabeh B, Huang F, Mao S, Chen C, Harper J, Zhong H, Gao X, Yu XQ, Hinrichs MJ, Reed M, Kamal A, Strout P, Cho S, Woods R, Hollingsworth RE, Dixit R, Wu H, Gao C, Dimasi N. Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics. Journal of controlled release 2016; 236: 100-116. [DOI:10.1016/j.jconrel.2016.06.025]
130. Yurkovetskiy AV, Yin M, Bodyak N, Stevenson CA, Thomas JD, Hammond CE, Qin L, Zhu B, Gumerov DR, Ter-Ovanesyan E, Uttard A, Lowinger TB. A polymer-based antibody-vinca drug conjugate platform: Characterization and preclinical efficacy. Cancer research 2015; 75(16) 3365-3372. [DOI:10.1158/0008-5472.CAN-15-0129]
131. Maric G, Annis M, Dong Z, Rose A, Ng S, Perkins D, MacDonald P, Ouellet V, Russo C, Siegel P. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α 5 β 1 for efficient breast cancer metastasis. Oncogene 2015; 34(43): 5494-5504. [DOI:10.1038/onc.2015.8]
132. aric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Oncotargets and therapy 2013; 6: 839. [DOI:10.2147/OTT.S44906]
133. Roth M, Barris DM, Piperdi S, Kuo V, Everts S, Geller D, Houghton P, Kolb EA, Hawthorne T, Gill J, Gorlick R. Targeting glycoprotein NMB with antibody‐drug conjugate, glembatumumab vedotin, for the treatment of Osteosarcoma. Pediatric blood and cancer 2016; 63(1): 32-38. [DOI:10.1002/pbc.25688]
134. Turashvili G, McKinney SE, Goktepe O, Leung SC, Huntsman DG, Gelmon KA, Los G, Rejto PA, Aparicio SA. P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Modern Pathology 2011; 24(1): 64-81. [DOI:10.1038/modpathol.2010.189]
135. Rose AA, Grosset A-A, Dong Z, Russo C, MacDonald PA, Bertos NR, St-Pierre Y, Simantov R, Hallett M, Park M, Gaboury L, Siegel PM. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clinical cancer research 2010; 16(7): 2147-2156. [DOI:10.1158/1078-0432.CCR-09-1611]
136. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature biotechnology 2003; 21(7): 778-784. [DOI:10.1038/nbt832]
137. Katz J, Janik JE, Younes A. Brentuximab vedotin (SGN-35). Clinical cancer research 2011; 17(20): 6428-6436. [DOI:10.1158/1078-0432.CCR-11-0488]
138. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. New England journal of medicine 2010; 363(19): 1812-1821. [DOI:10.1056/NEJMoa1002965]
139. Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, Cigler T, Stopeck A, Citrin D, Oliff I, Bechhold R, Loutfi R, Garcia AA, Cruickshank S, Crowley E, Green J, Hawthorne T, Yellin MJ, Davis TA, Vahdat LT. Emerge: A randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. Journal of clinical oncology 2015; 33(14): 1609-1619. [DOI:10.1200/JCO.2014.56.2959]
140. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 2015; 6(26): 22496-22512. [DOI:10.18632/oncotarget.4318]
141. Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes and cancer 2015; 6(3-4): 84. [DOI:10.18632/genesandcancer.40]
142. Zeng P, Chen MB, Zhou LN, Tang M, Liu CY, Lu PH. Impact of TROP2 expression on prognosis in solid tumors: A Systematic review and meta-analysis. Scientific reports 2016; 6: 33658. [DOI:10.1038/srep33658]
143. Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Goldenberg DM. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clinical cancer research 2011; 17(10): 3157-3169. [DOI:10.1158/1078-0432.CCR-10-2939]
144. Boni V, Rixe O, Rasco D, Gomez-Roca C, Calvo E, Morris JC, Tolcher AW, Assadourian S, Guillemin H, Delord JP. Abstract A73: A Phase I first-in-human (FIH) study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors (STs)(NCT01156870). AACR 2013 [DOI:10.1158/1535-7163.TARG-13-A73]
145. Smith NL, Halliday BE, Finley JL, Wennerberg AEK. The spectrum of immunohistochemical reactivity of monoclonal antibody DS6 in nongynecologic neoplasms. Applied immunohistochemistry and molecular morphology 2002; 10(2): 152-158. [DOI:10.1097/00129039-200206000-00010]
146. Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, Goldmacher VS, Xie H, Steeves RM, Lutz RJ, Zhao R, Wang L, Blättler WA, Chari RV. Semisynthetic maytansine analogues for the targeted treatment of cancer. Journal of medicinal chemistry 2006; 49(14): 4392-4408. [DOI:10.1021/jm060319f]
147. Meister A, Anderson ME. Glutathione. Annual review of biochemistry 1983; 52(1): 711-760. [DOI:10.1146/annurev.bi.52.070183.003431]
148. Gomez-Roca CA, Boni V, Moreno V, Morris JC, Delord JP, Calvo E, Papadopoulos KP, Rixe O, Cohen P, Tellier A. A phase I study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors. American society of clinical oncology 2016. [DOI:10.1200/JCO.2016.34.15_suppl.2511]
149. Taylor K, Morgan H, Johnson A, Nicholson R. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS letters 2005; 579(2): 427-432. [DOI:10.1016/j.febslet.2004.12.006]
150. El-Tanani MK, Green CD. Interaction between estradiol and growth factors in the regulation of specific gene expression in MCF-7 human breast cancer cells. The journal of steroid biochemistry and molecular biology 1997; 60(5-6): 269-276. [DOI:10.1016/S0960-0760(96)00226-9]
151. Unno J, Satoh K, Hirota M, Kanno A, Hamada S, Ito H, Masamune A, Tsukamoto N, Motoi F, Egawa S, Unno M, Horii A, Shimosegawa T. LIV-1 enhances the aggressive phenotype through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. International journal of oncology 2009; 35(4): 813-821.
152. Grattan BJ, Freake HC. Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients 2012; 4(7): 648-675. [DOI:10.3390/nu4070648]
153. Taylor K, Morgan H, Johnson A, Nicholson R. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS letters 2005; 579(2): 427-432 [DOI:10.1016/j.febslet.2004.12.006]
154. Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, Miyamoto JB, Nesterova A, Westendorf L, Van Epps HA, Whiting N, Benjamin DR. SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Molecular cancer therapeutics 2014; 13(12): 2991-3000. [DOI:10.1158/1535-7163.MCT-13-0896]
155. Speers C, Tsimelzon A, Sexton K, Herrick AM, Gutierrez C, Culhane A, Quackenbush J, Hilsenbeck S, Chang J, Brown P. Identification of novel kinase targets for the treatment of estrogen receptor-negative breast cancer. Clinical cancer research 2009; 15(20): 6327-6340. [DOI:10.1158/1078-0432.CCR-09-1107]
156. Maderna A, Doroski M, Subramanyam C, Porte A, Leverett CA, Vetelino BC, Chen Z, Risley H, Parris K, Pandit J, Varghese AH, Shanker S, Song C, Sukuru SC, Farley KA, Wagenaar MM, Shapiro MJ, Musto S, Lam MH, Loganzo F, O'Donnell CJ. Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. Journal of medicinal chemistry 2014; 57(24): 10527-10543. [DOI:10.1021/jm501649k]
157. Tolcher A, Calvo E, Maitland M, Gibson B, Xuan D, Joh T, Jackson-Fischer A, Damelin M, Barton J, Xin X. 28LBA A phase 1 study of PF-06647020, an antibody-drug conjugate targeting PTK7 in patients with advanced solid tumors. European journal of cancer 2015; 51: S724. [DOI:10.1016/S0959-8049(16)31946-3]
158. Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Molecular aspects of medicine 2006; 27(5-6): 495-502. [DOI:10.1016/j.mam.2006.08.005]
159. Saitoh O, Wang W-C, Lotan R, Fukuda M. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. Journal of biological chemistry 1992; 267(8): 5700-5711. [DOI:10.1016/S0021-9258(18)42823-2]
160. Baudat Y, Cameron B, Dabdoubi T, Lefebvre A-M, Merino-Trigo A, Thomas C, Pecheux V, Genet B, Calvet L, Blot L. Characterization of a novel maytansinoid-antibody-drug conjugate targeting LAMP1 expressed at the surface of tumor cells. AACR 2016. [DOI:10.1158/1538-7445.AM2016-1198]
161. Calvet L, Lefebvre AM, Nicolazzi C, Blot L, Thomas C, Baudat Y, Cameron B, Garcia-Echeverria C, Mayaux JF, Blanc V. Outstanding preclinical efficacy of a novel maytansinoid-antibody-drug conjugate targeting LAMP1 in patient-derived xenograft solid tumors. AACR 2016. [DOI:10.1158/1538-7445.AM2016-1197]
162. Li DM, Feng YM. Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast cancer research and treatment 2011; 128(1): 7-21. [DOI:10.1007/s10549-011-1499-x]
163. Paredes J, Correia AL, Ribeiro AS, Milanezi F, Cameselle-Teijeiro J, Schmitt FC. Breast carcinomas that co-express E-and P-cadherin are associated with p120-catenin cytoplasmic localisation and poor patient survival. Journal of clinical pathology 2008; 61(7): 856-862. [DOI:10.1136/jcp.2007.052704]
164. Vieira AF, Paredes J. P-cadherin and the journey to cancer metastasis. Molecular cancer 2015; 14: 178. [DOI:10.1186/s12943-015-0448-4]
165. Menezes D, Abrams TJ, Karim C, Tang Y, Ying C, Miller K, Fanton C, Ghoddusi M, Wang Z, Patawaran M. Development and activity of a novel antibody-drug conjugate for the treatment of P-cadherin expressing cancers. AACR 2015. [DOI:10.1158/1538-7445.AM2015-1682]
166. Giaginis C, Tsoukalas N, Bournakis E, Alexandrou P, Kavantzas N, Patsouris E, Theocharis S. Ephrin (Eph) receptor A1, A4, A5 and A7 expression in human non-small cell lung carcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients' survival. BMC clinical pathology 2014; 14(1): 8. [DOI:10.1186/1472-6890-14-8]
167. Liu C, Huang H, Wang C, Kong Y, Zhang H. Involvement of ephrin receptor A4 in pancreatic cancer cell motility and invasion. Oncology letters 2014; 7(6): 2165-2169. [DOI:10.3892/ol.2014.2011]
168. Damelin M, Bankovich A, Park A, Aguilar J, Anderson W, Santaguida M, Aujay M, Fong S, Khandke K, Pulito V, Ernstoff E, Escarpe P, Bernstein J, Pysz M, Zhong W, Upeslacis E, Lucas J, Nichols T, Loving K, Foord O, Hampl J, Stull R, Barletta F, Falahatpisheh H, Sapra P, Gerber HP, Dylla SJ. Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clinical cancer research 2015; 21(18): 4165-4173. [DOI:10.1158/1078-0432.CCR-15-0695]
169. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou HR, Upeslacis J, Shochat D, Mountain A, Flowers DA, Bernstein I. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody− calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjugate chemistry 2002; 13(1): 47-58. [DOI:10.1021/bc010021y]
170. Cserni G. Histological type and typing of breast carcinomas and the WHO classification changes over time. Pathologica 2020; 112(1): 25-41. [DOI:10.32074/1591-951X-1-20]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb