Volume 25, Issue 4 (7-2021)                   IBJ 2021, 25(4): 303-307 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mardi A, Biglari A, Nejatbakhsh R, Abdanipour A. Valproic Acid Ameliorates Locomotor Function in the Rat Model of Contusion via Alteration of Mst1, Bcl-2, and Nrf2 Gene Expression. IBJ 2021; 25 (4) :303-307
URL: http://ibj.pasteur.ac.ir/article-1-3161-en.html
Abstract:  
Background: In animal models of inflammatory diseases, Mammalian sterile 20-like kinase 1 (Mst1) facilitates the programmed cell death as a novel pro-apoptotic kinase. This research aimed to determine the expression level of Mst1 gene in a rat model of SCI treated with valproic acid (VPA). Methods: Severe rat model contusion was used for evaluation of the neuroprotective effect of valproic acid. The Basso-Beattie-Bresnahan test, was performed to determine locomotor functions. Hematoxylin/eosin staining and TUNEL assay were performed to detect cavity formation and apoptosis, respectively. The mRNA levels of the genes Mst1, nuclear factor (erythroid-derived 2)-like 2, and B-cell lymphoma 2 were evaluated, using quantitative real-time PCR acute spinal cord injury (RT-PCR). Results: The results revealed that Mst1 gene expression and TUNEL-positive cells in the VPA-treated group were significantly reduced as compared to the untreated group (p ≤ 0.05). Conclusion: Our findings indicate that VPA has therapeutic potential and can be a candidate for the treatment of neurodegenerative disorders and traumatic injury as a promising drug.
Type of Study: Short Communication | Subject: Related Fields

References
1. Rawat SJ, Chernoff J. Regulation of mammalian Ste20 (Mst) kinases. Trends in biochemical sciences 2015; 40(3): 149-156. [DOI:10.1016/j.tibs.2015.01.001]
2. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. Journal of neuroscience 1997; 17(7): 2295-2313. [DOI:10.1523/JNEUROSCI.17-07-02295.1997]
3. Gottlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal 2001; 20(24): 6969-6978. [DOI:10.1093/emboj/20.24.6969]
4. Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against Parkinson's disease: Recent perspectives. International journal of molecular sciences 2016; 17(6): 904. [DOI:10.3390/ijms17060904]
5. Rattanarojsakul P, Thawesaengskulthai N. A medication safety model: a case study in Thai hospital. Global journal of health science 2013; 5(5): 89-101. [DOI:10.5539/gjhs.v5n5p89]
6. Ozçelik T, Rosenthal A, Francke U. Chromosomal mapping of brain-derived neurotrophic factor and neurotrophin-3 genes in man and mouse. Genomics 1991; 10(3): 569-575. [DOI:10.1016/0888-7543(91)90437-J]
7. Kjell J, Finn A, Hao J, Wellfelt K, Josephson A, Svensson CI, Wiesenfeld-Hallin Z, Eriksson U, Abrams M, Olson L. Delayed imatinib treatment for acute spinal cord injury: Functional recovery and serum biomarkers. Journal of neurotrauma 2015; 32(21): 1645-1657. [DOI:10.1089/neu.2014.3863]
8. Michel RP, Cruz-Orive LM. Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. Journal of microscopy 1988; 150(Pt2): 117-136. [DOI:10.1111/j.1365-2818.1988.tb04603.x]
9. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research 2001; 29(9): e45. [DOI:10.1093/nar/29.9.e45]
10. Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation & apoptosis in spinal cord injury. Indian journal of medical research 2012; 135(3): 287-296.
11. Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi AD. Apoptosis after traumatic human spinal cord injury. Journal of neurosurgery 1998; 89(6): 911-920. [DOI:10.3171/jns.1998.89.6.0911]
12. Ekshyyan O, Aw TY. Apoptosis in acute and chronic neurological disorders. Frontiers in bioscience 2004; 9: 1567-1576. [DOI:10.2741/1357]
13. Lee JY, Kim HS, Choi HY, Oh TH, Ju BG, Yune TY. Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease‐9 activity and improves functional recovery after spinal cord injury. Journal of neurochemistry 2012; 121(5): 818-829. [DOI:10.1111/j.1471-4159.2012.07731.x]
14. Yuan F, Xie Q, Wu J, Bai Y, Mao B, Dong Y, Bi W, Ji G, Tao W, Wang Y, Yuan Z. MST1 promotes apoptosis through regulating Sirt1-dependent p53 deacetylation. Journal of biological chemistry 2011; 286(9): 6940-6945. [DOI:10.1074/jbc.M110.182543]
15. Del Re DP, Matsuda T, Zhai P, Maejima Y, Jain MR, Liu T, Li H, Hsu CP, Sadoshima J. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Molecular cell 2014; 54(4): 639-650. [DOI:10.1016/j.molcel.2014.04.007]
16. Zhang W, Cheng L, Hou Y, Si M, Zhao YP, Nie L. Plumbagin protects against spinal cord injury-induced oxidative stress and inflammation in Wistar rats through Nrf-2 upregulation. Drug research (Stuttgart) 2015; 65(9): 495-499. [DOI:10.1055/s-0034-1389950]
17. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews molecular cell biology 2014; 15(1): 49-63. [DOI:10.1038/nrm3722]
18. Lv L, Sun Y, Han X, Xu CC, Tang YP, Dong Q. Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain research 2011; 1396: 60-68. [DOI:10.1016/j.brainres.2011.03.040]
19. Bhavsar P, Ahmad T, Adcock IM. The role of histone deacetylases in asthma and allergic diseases. Journal of allergy and clinical immunology 2008; 121(3): 580-584. [DOI:10.1016/j.jaci.2007.12.1156]
20. Abdanipour A, Schluesener HJ, Tiraihi T. Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iranian biomedical journal 2012; 16(2): 90-100.
21. Lee JY, Maeng S, Kang SR, Choi HY, Oh TH, Ju BG, Yune TY. Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury. Journal of neurotrauma 2014; 31(6): 582-594. [DOI:10.1089/neu.2013.3146]
22. Zhang M, Tao W, Yuan Z, Liu Y. Mst‐1 deficiency promotes post‐traumatic spinal motor neuron survival via enhancement of autophagy flux. Journal of neurochemistry 2017; 143(2): 244-256. [DOI:10.1111/jnc.14154]
23. Hao H-H, Wang L, Guo Z-J, Bai L, Zhang RP, Shuang WB, Jia YJ, Wang J, Li XY, Liu Q. Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats. Neuroscience bulletin 2013; 29(4): 484-492. [DOI:10.1007/s12264-013-1355-6]
24. Tummala KS, Kottakis F, Bardeesy N. NRF2: Translating the redox code. Trends in molecular medicine 2016; 22(10): 829-831. [DOI:10.1016/j.molmed.2016.08.002]
25. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and cellular biology 2004; 24(16): 7130-7139. [DOI:10.1128/MCB.24.16.7130-7139.2004]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb