Volume 24, Issue 6 (11-2020)                   IBJ 2020, 24(6): 399-404 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi-Nasab S D, Sabahi F, Kaghazian H, Paryan M, Mirab Samiee S, Ghaderi M, et al . A Real-Time RT-PCR Assay for Genotyping of Rotavirus. IBJ 2020; 24 (6) :399-404
URL: http://ibj.pasteur.ac.ir/article-1-3158-en.html
Abstract:  
Background: HRV is the causative agent of severe gastroenteritis in children and responsible for two million hospitalizations and more than a half-million deaths annually. Sequence characteristics of the gene segments encoding the VP7 and VP4 proteins are used for the genotype classification of rotavirus. A wide variety of molecular methods are available, mainly based on reverse transcription PCR for rapid, specific and sensitive genotyping of rotaviruses. This study describes an alternative real-time PCR assay for genotyping of rotavirus. Methods: The samples of stools studied in this research have been collected from patients referred to Children's Medical Centers, Tehran, Iran. Rotavirus detection and genotyping were performed using the RT-PCR and semi-nested RT-PCR, respectively. Samples were then genotyped with a new real-time PCR. Results: The real-time PCR was able to genotype all positive samples with a mean Ct of 28.2. Besides, a concordance rate of 100% was detected between real-time PCR and semi-nested RT-PCR. Conclusion: In this study, the genotyping of rotavirus with real-time PCR showed that this method can provide several favorable features, including high sensitivity and specificity, and a wide dynamic range for rotavirus genotyping.

References
1. Parashar UD, Gibson CJ, Bresee JS, Glass RI. Emerging infectious diseases 2006; 12(2): 304-306. [DOI:10.3201/eid1202.050006]
2. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. The lancet infectious diseases 2012; 12(2): 136-141. [DOI:10.1016/S1473-3099(11)70253-5]
3. Dennehy PH. Transmission of rotavirus and other enteric pathogens in the home. The pediatric infectious disease journal 2000; 19(10): S103-S105. [DOI:10.1097/00006454-200010001-00003]
4. Nasab SDM, Sabahi F, Makvandi M, Samiee SM, Nadji SA, Ravanshad M. Epidemiology of rotavirus-norovirus Co-Infection and determination of norovirus genogrouping among children with acute gastroenteritis in Tehran, Iran. Iranian biomedical journal 2016; 20(5): 280-286.
5. Lu X, McDonald SM, Tortorici MA, Tao YJ, Vasquez-Del Carpio R, Nibert ML, Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Structure 2008; 16(11): 1678-1688. [DOI:10.1016/j.str.2008.09.006]
6. Malik J, Bhan MK, Ray P. Natural immunity to rotavirus infection in children. Indian journal of biochemistry and biophysics 2008; 45(4): 219-228.
7. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, Buesa J, Esonna MD, Estes Mk, Gentsch JR, Itueeiza-Gómara M, Johne R, Kirkwood CD, Martella PP, Nakagomi O, Parreno V, Rahman M, Ruqqeri FM, Saif LJ, Santos N, Stever A, Taniquuchi K, Patton JT, Desseelberger U, Van Ranst M. Uniformity of rotavirus strain nomenclature proposed by the rotavirus classification working group [RCWG]. Archives of virology 2011; 156(8): 1397-1413. [DOI:10.1007/s00705-011-1006-z]
8. Tort LF, Victoria M, Lizasoain A, García M, Berois M, Cristina J, Leite JP, Gómez MM, Miagostovich MP, Colina R. Detection of common, emerging and uncommon VP4 and VP7 human group A rotavirus genotypes from urban sewage samples in uruguay. Food and environmental virology 2015; 7(4): 342-353. [DOI:10.1007/s12560-015-9213-5]
9. Bányai K, László B, Duque J, Steele AD, Nelson EAS, Gentsch JR, Parashar UD. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine 2012; 30(1): 122-130. [DOI:10.1016/j.vaccine.2011.09.111]
10. Mousavi Jarrahi Y, Zahraei SM, Sadigh N, Esmaeelpoor Langeroudy K, Khodadost M, Ranjbaran M, The cost effectiveness of rotavirus vaccination in Iran. Human vaccines and immunotherapeutics 2016; 12(3): 794-800. [DOI:10.1080/21645515.2015.1087626]
11. Rahbarimanesh AA, Sayari AA. Modarres SH, Edalat R, Sohrabi A. Human rotavirus genotypes detection among hospitalized children, a study in Tehran, Iran. Archives of Iranian medicine 2011; 4(1): 39-45.
12. Khoshdel A, Parvin N, Doosti A, Eshraghi A. Prevalence and molecular characterization of rotaviruses as causes of nosocomial diarrhea in children. Turkish journal of pediatrics 2014; 56(5): 469-474.
13. Desselberger U. Differences of rotavirus vaccine effectiveness by country: likely causes and contributing factors. Pathogens 2017; 6(4): 65. [DOI:10.3390/pathogens6040065]
14. Matthijnssens J, Bilcke J, Ciarlet M, Martella V, Bányai K, Rahman MzELLER m,Beutels P,Van Damme P,Van Rant M. Rotavirus disease and vaccination: impact on genotype diversity. Future microbiology 2009; 4(10): 1303-1316. [DOI:10.2217/fmb.09.96]
15. Vinjé J. Advances in laboratory methods for detection and typing of norovirus. Journal of clinical microbiology 2015; 53(2): 373-381. [DOI:10.1128/JCM.01535-14]
16. Liu J, Lurain K, Sobuz SU, Begum S, Kumburu H, Gratz J, Toney D, Gautam R, Bowen W, Petri WA, Haque R, Houpt ER. Molecular genotyping and quantitation assay for rotavirus surveillance. Journal of virological methods 2015; 213: 157-163. [DOI:10.1016/j.jviromet.2014.12.001]
17. Gunson RN, Miller J, Leonard A, Carman WF. Importance of PCR in the diagnosis and understanding of rotavirus illness in the community. Communicable disease and public health 2003; 6(1): 63-65.
18. Pang XL, Lee B, Boroumand N, Leblanc B, Preiksaitis JK, Yu Ip CC. Increased detection of rotavirus using real time reverse transcription-polymerase chain reaction [RT-PCR] assay in stool specimens from children with diarrhea. Journal of medical virology 2004; 72(3): 496-501. [DOI:10.1002/jmv.20009]
19. Khamrin P, Okame M, Thongprachum A, Nantachit N, Nishimura S, Okitsu S, Maneekarm N, Shijima H. A single-tube multiplex PCR for rapid detection in feces of 10 viruses causing diarrhea. Journal of virological methods 2011; 173(2): 390-393. [DOI:10.1016/j.jviromet.2011.02.012]
20. Organization WH. Manual of Rotavirus detection and characterization methods. 2009; Reterieved from: https://apps.who.int/iris/handle/10665/70122.
21. Kottaridi C, Spathis AT, Ntova CK, Papaevangelou V, Karakitsos P. Evaluation of a multiplex real time reverse transcription PCR assay for the detection and quantitation of the most common human rotavirus genotypes. Journal of virological methods 2012; 180(12): 49-53. [DOI:10.1016/j.jviromet.2011.12.009]
22. Boddicker JD, Rota PA, Kreman T, Wangeman A, Lowe L, Hummel KB, Thompson R, Bellini W, Pentella M, Desjardin L. Real-time reverse transcription-PCR assay for detection of mumps virus RNA in clinical specimens. Journal of clinicalmicrobiology 2007; 45(9): 2902-2908. [DOI:10.1128/JCM.00614-07]
23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 2013; 30(12): 2725-2729. [DOI:10.1093/molbev/mst197]
24. Kotirum S, Vutipongsatorn N, Kongpakwattana K, Hutubessy R, Chaiyakunapruk N. Global economic evaluations of rotavirus vaccines: A systematic review. Vaccine 2017; 35(26): 3364-3386. [DOI:10.1016/j.vaccine.2017.04.051]
25. Kollaritsch H, Kundi M, Giaquinto C, Paulke-Korinek M. Rotavirus vaccines: a story of success. Clinical microbiology and infection 2015; 21(8): 735-743. [DOI:10.1016/j.cmi.2015.01.027]
26. Kirkwood CD, Steele AD. Rotavirus vaccine will have an impact in Asia. PLoS medicine 2017; 14(5): e1002298. [DOI:10.1371/journal.pmed.1002298]
27. Tissera MS, Cowley D, Bogdanovic-Sakran N, Hutton ML, Lyras D, Kirkwood CD, Buttery JP. Options for improving effectiveness of rotavirus vaccines in developing countries. Human vaccines and immunotherapeutics 2017; 13(4): 921-927. [DOI:10.1080/21645515.2016.1252493]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb