Volume 24, Issue 6 (11-2020)                   IBJ 2020, 24(6): 361-369 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Irani S, Paknejad M, Soleimani M, Soleimani A. Evaluation of miR-34a Effect on CCND1 mRNA Level and Sensitization of Breast Cancer Cell Lines to Paclitaxel. IBJ 2020; 24 (6) :361-369
URL: http://ibj.pasteur.ac.ir/article-1-3146-en.html
Abstract:  
Background: A growing body of literature has revealed the effective role of miR-34a, as a tumor suppressor and regulator of expression of multiple targets in tumorigenesis and cancer progression. This study aimed at evaluating the potential effects of miR-34a alone or in combination with paclitaxel on breast cancer cells. Methods: After miR-34a transduction by lentiviral vectors in two MCF-7 and MDA-MB-231 cell lines of breast cancer, effects of the elevated expression of miR-34a in the cell viability and the cell proliferation were determined using MTT assay  in treated and untreated cells with paclitaxel. The mRNA level of the CCND1 (Cyclin D1)gene was then measured in the two cell lines using the qRT-PCR assay. Finally, the influence of miR-34a and paclitaxel on apoptosis and cell cycle progression were examined by flow cytometry. Results: The CCND1 mRNA expression levels were significantly down-regulated by overexpressed lentiviral miR-34a in MCF-7 and MDA-MB-231 cells. Combined treatment by miR-34a and paclitaxel reduced the cell viability and proliferation compared to single-drug treatment. In addition, the cell cycle arrest appeared at two phases by the combination of miR-34a and paclitaxel in MDA-MB-231 cells. Conclusion: Our results suggest that miR34a, in combination with paclitaxel, has a potential for decreasing the cell viability and proliferation. Moreover, it can reduce the expression of CCND1 mRNA independent of the paclitaxel effect.

References
1. Downs-Holmes C, Silverman P. Breast cancer: overview & updates. Nurse practitioner 2011; 36 (12): 20-26. [DOI:10.1097/01.NPR.0000407602.29522.d7]
2. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nature reviews molecular cell biology 2009; 10(2): 126-139. [DOI:10.1038/nrm2632]
3. Eastlack SC, Alahari SK. MicroRNA and breast cancer: understanding pathogenesis, improving management. Noncoding RNA 2015; 1(1): 17-43. [DOI:10.3390/ncrna1010017]
4. Price C, Chen J. MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes and diseases 2014; 1(1): 53-63. [DOI:10.1016/j.gendis.2014.06.004]
5. Li XJ, Ji MH, Zhong Sl, Zha QB, Xu JJ, Zhao JH,Tang JH. MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Archives of medical research 2012; 43(7): 514-521. [DOI:10.1016/j.arcmed.2012.09.007]
6. O'Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast cancer research 2010; 12(2): 201. [DOI:10.1186/bcr2484]
7. Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacological research 2015; 97: 104-121. [DOI:10.1016/j.phrs.2015.04.015]
8. Hermeking H. The miR-34 family in cancer and apoptosis. Cell death and differentiation 2010; 17(2): 193-199. [DOI:10.1038/cdd.2009.56]
9. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. Downregulation of CCND1 and CDK6 by miR‐34a induces cell cycle arrest. FEBS letters 2008; 582(10): 1564-1568. [DOI:10.1016/j.febslet.2008.03.057]
10. Li H, Yang BB. Friend or foe: the role of microRNA in chemotherapy resistance. Acta pharmacologica sinica 2013; 34(7): 870-879. [DOI:10.1038/aps.2013.35]
11. Kopczyńska E. Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel. Contemporary oncology 2015; 19(6): 423-427. [DOI:10.5114/wo.2015.56648]
12. Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. International journal of cancer 2010; 126(1): 2-10. [DOI:10.1002/ijc.24782]
13. Pang RT, Leung CO, Lee CL, Lam KK, Ye TM, Chiu PC, Yeung WS. MicroRNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like1. BMC cancer 2013; 13: 25. [DOI:10.1186/1471-2407-13-25]
14. Fang C, Qiu S, Sun F, Li W, Wang Z, Yue B,WU X,Yan D. Long non-coding RNA HNF1A-AS1 mediated repression of miR-34a/SIRT1/p53 feedback loop promotes the metastatic progression of colon cancer by functioning as a competing endogenous RNA. Cancer letters 2017; 410: 50-62. [DOI:10.1016/j.canlet.2017.09.012]
15. Corcoran C, Rani S, O'Driscoll L. miR‐34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 2014; 74(13): 1320-1334. [DOI:10.1002/pros.22848]
16. Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PloS one 2011; 6(8): e24099. [DOI:10.1371/journal.pone.0024099]
17. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone Mr, Gullà A, Tagliaferri P, Tassone P, Caraglia M. Mir-34: a new weapon against cancer? Molecular therapy-nucleic acids 2014; 3: e1945. [DOI:10.1038/mtna.2014.47]
18. Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Oncotargets and therapy 2018; 11: 1529-1541. [DOI:10.2147/OTT.S152462]
19. Jin Y, Jin C, Wennerberg J, Höglund M, Mertens F. Cyclin D1 amplification in chromosomal band 11q13 is associated with overrepresentation of 3q21-q29 in head and neck carcinomas. International journal of cancer 2002; 98(3): 475-479. [DOI:10.1002/ijc.10225]
20. Armes JE, Trute L, White D, Southey MC, Hammet F, Tesoriero A, Hutchins AM, Dite GS, McCredie MR, Giles GG, Hopper JL, Venter DJ. Distinct molecular pathogeneses of early-onset breast cancers in BRCA1 and BRCA2 mutation carriers: a population-based study. Cancer research 1999; 59(8): 2011-2017.
21. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RJ, deFazio A, Watts CK, Musqrove EA, Sutherland RL. Expression and amplification of cyclin genes in human breast cancer. Oncogene 1993; 8(8): 2127-2133.
22. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson CBarnes D, Peters G. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer research 1994; 54(7): 1812-1817.
23. Kenny FS, Hui R, Musgrove EA, Gee JM, Blamey RW, Nicholson RI, Sutherland RL,Robertson JF. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clinical cancer research 1999; 5(8): 2069-2076.
24. Zhou DJ, Casey G, Cline MJ. Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 1988; 2(3): 279-282.
25. Cuny M, Kramar A, Courjal F, Johannsdottir V, Iacopetta B, Fontaine H, Grenier J, Culine S, Theillet C. Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer research 2000; 60(4): 1077-1083.
26. Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ, Raines RT, Burkard ME, Weaver BA. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Science translational medicine 2014; 6(229): 229ra43. [DOI:10.1126/scitranslmed.3007965]
27. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. New England journal of medicine 2007; 357(26): 2666-2676. [DOI:10.1056/NEJMoa072113]
28. Rowinsky EK, Donehower RC. Paclitaxel (taxol) New England Journal Medicine. 1995; 332 (15): 1004-1014. [DOI:10.1056/NEJM199504133321507]
29. Saunders DE, Lawrence WD, Christensen C, Wappler NL, Ruan H, Deppe G. Paclitaxel‐induced apoptosis in MCF‐7 breast‐cancer cells. International journal of cancer 1997; 70(2): 214-220. https://doi.org/10.1002/(SICI)1097-0215(19970117)70:2<214::AID-IJC13>3.0.CO;2-I [DOI:10.1002/(SICI)1097-0215(19970117)70:23.0.CO;2-I]
30. Vyas D, Laput G, Vyas AK. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Oncotargets and therapy 2014; 7: 1015-1023. [DOI:10.2147/OTT.S60114]
31. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature reviews drug discovery 2013; 12(11): 847-865. [DOI:10.1038/nrd4140]
32. Li X, Shen JK, Hornicek FJ, Xiao T, Duan Z. Noncoding RNA in drug resistant sarcoma. Oncotarget 2017; 8(40): 69086-69104. [DOI:10.18632/oncotarget.19029]
33. Malhotra A, Jain M, Prakash H, Vasquez KM, Jain A. The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer. Oncotarget 2017; 8(66): 110671-110684. [DOI:10.18632/oncotarget.22577]
34. Majumder S, Jacob ST. Emerging role of microRNAs in drug-resistant breast cancer. Gene expression 2011; 15(3): 141-151. [DOI:10.3727/105221611X13176664479287]
35. Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clinical epigenetics 2019; 11(1): 25. [DOI:10.1186/s13148-018-0587-8]
36. LIANG Z, Yaguang X. MicroRNAs mediate therapeutic and preventive effects of natural agents in breast cancer. Chinese journal of natural medicines 2016; 14(12): 881-887. [DOI:10.1016/S1875-5364(17)30012-2]
37. Rabzia A, Khazaei M, Rashidi Z, Khazaei MR. Synergistic anticancer effect of paclitaxel and noscapine on human prostate cancer cell lines. Iranian journal of pharmaceutical research 2017; 16(4): 1432-1442.
38. Mobarra N, Shafiee A, Rad SM, Tasharrofi N, Soufi-Zomorod M, Hafizi M, Movahed M, Kouhkan F, Soleimani M. Overexpression of microRNA-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells. In vitro cellular and developmental biology animal 2015; 51(6): 604-611. [DOI:10.1007/s11626-015-9872-4]
39. Soltani-Sedeh H, Irani S, Mirfakhraie R, Soleimani M. Potential using of microRNA-34A in combination with paclitaxel in colorectal cancer cells. Journal of cancer research and therapeutics 2019; 15(1): 32-37.
40. Kastl L, Brown I, Schofield AC. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast cancer research and treatment 2012; 131(2): 445-454. [DOI:10.1007/s10549-011-1424-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb