Volume 25, Issue 2 (3-2021)                   IBJ 2021, 25(2): 117-131 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghamar Talepoor A, Khosropanah S, Doroudchi M. Frequency of Efficient Circulating Follicular Helper T Cells Correlates with Dyslipidemia and WBC Count in Atherosclerosis. IBJ 2021; 25 (2) :117-131
URL: http://ibj.pasteur.ac.ir/article-1-3121-en.html
Background: The significance of cTfh cells and their subsets in atherosclerosis is not well understood. We measured the frequency of cTfh subsets in patients with different degrees of stenosis using flow-cytometry. Methods: Participants included high (≥50%; n = 12) and low (<50%; n = 12) stenosis groups, as well as healthy controls (n = 6). Results: The frequency of CCR7loPD-1hiefficient-cTfh was significantly higher in patients with high stenosis compared to healthy controls (p = 0.003) and correlated with low-density lipoprotein (LDL; p = 0.043), cholesterol (p = 0.043), triglyceride (p = 0.019), neutrophil count (p = 0.032), platelet count (p = 0.024), neutrophil/lymphocyte ratio (NLR; p = 0.046), and platelet/lymphocyte ratio (PLR; p = 0.025) in high stenosis group. The frequency of CCR7hiPD-1lo quiescent-cTfh was higher in healthy controls compared to the high-stenosis group (p = 0.001) and positively correlated with high-density lipoprotein (p = 0.046). The frequency of efficient-cTfh cells was correlated with platelet count (p = 0.043), NLR (p = 0.036), and PLR (p P = 0.035) in low-stenosis group, while that of quiescent-cTfh cells was negatively correlated with LDL (p = 0.034), cholesterol (p = 0.047), platelet count (p = 0.032), and PLR (p = 0.041). Conclusion: High percentages of cTfh and efficient-cTfh cells in patients with advanced atherosclerosis and their correlation with dyslipidemia and white blood cell counts suggest an ongoing cTfh subset deviation, towards efficient phenotype in the milieu of inflammation and altered lipid profile. Efficient cTfh cells have an effector phenotype and could in turn contribute to atherosclerosis progression.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Taleb S. Inflammation in atherosclerosis. Archives of cardiovascular diseases 2016; 109(12): 708-715. [DOI:10.1016/j.acvd.2016.04.002]
2. Conti P, Shaik-Dasthagirisaeb Y. Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Central European journal of immunology 2015; 40(30): 380-386. [DOI:10.5114/ceji.2015.54603]
3. Mandatori S, Pacella I, Marzolla V, Mammi C, Starace D, Padula F, Vitiello L, Armani A, Savoia C,Taurino M De zio D, Giampietri C, Piconese S, Ceecconi F, Caprio M, Filippini A. Altered tregs differentiation and impaired autophagy correlate to atherosclerotic disease. Frontiers in immunology 2020; 11: 350. [DOI:10.3389/fimmu.2020.00350]
4. Seledtsov VI, von Delwig AA. Immune memory limits human longevity: the role of memory CD4+ T cells in age-related immune abnormalities. Expert review of vaccines 2020; 19(3): 209-215. [DOI:10.1080/14760584.2020.1745638]
5. Dorneles GP, Dos Passos AAZ, Romão PRT, Peres A. New insights about regulatory T cells distribution and function with exercise: the role of immunometabolism. Current pharmaceutical design 2020; 26(9): 979-990. [DOI:10.2174/1381612826666200305125210]
6. Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nature reviews cardiology 2020; 17:387-401. [DOI:10.1038/s41569-020-0352-5]
7. Kervinen H, Huittinen T, Vaarala O, Leinonen M, Saikku P, Manninen V, Manttari M. Antibodies to human heat shock protein 60, hypertension and dyslipidemia. A study of joint effects on coronary risk. Atherosclerosis 2003; 169: 339-344. [DOI:10.1016/S0021-9150(03)00229-6]
8. Ammirati E, Moroni F, Magnoni M, Camici PG. The role of T and B cells in human atherosclerosis and atherothrombosis. Clinical and experimental immunology 2015; 179(2): 173-187. [DOI:10.1111/cei.12477]
9. Yin C, Mohanta SK, Srikakulapu P, Weber C, Habenicht AJ. Artery tertiary lymphoid organs: powerhouses of atherosclerosis immunity . Frontiers in immunology 2016; 7: 387. [DOI:10.3389/fimmu.2016.00387]
10. Passos L, Lupieri A, Becker-Greene D, Aikawa E. Innate and adaptive immunity in cardiovascular calcification. Atherosclerosis 2020, DOI: 306. 10.1016/j.atherosclerosis.2020.02.016. [DOI:10.1016/j.atherosclerosis.2020.02.016]
11. Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the role of inflammation in the pathogenesis of Atherosclerosis. International journal of molecular sciences 2017; 18(10): 2034. [DOI:10.3390/ijms18102034]
12. Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, Duffau P, Blance P, Richez C. T follicular helper cells in autoimmune disorders. Frontiers in immunology 2018; 9: 1637. [DOI:10.3389/fimmu.2018.01637]
13. Forcade E, Kim HT, Cutler C, Wang K, Alho AC, Nikiforow S, Ho VT, Koreth J, Armand P, Alyea EP, Blazear BR, Soiffer RJ, Antin JH, Ritz J. Circulating T follicular helper cells with increased function during chronic graft-versus-host disease. Blood 2016; 127(20): 2489-2497. [DOI:10.1182/blood-2015-12-688895]
14. Viisanen T, Ihantola EL, Nanto-Salonen K, Hyöty H, Nurminen N, Selvenius J, Juutilainen A, Moilanen L, Pihlajamäki J, Veijola R, Toppari J, Knip M, Ilonen J, Kinnunen T. Circulating CXCR5+PD-1+ICOS+ follicular T helper cells are increased close to the diagnosis of type 1 diabetes in children with multiple autoantibodies. Diabetes 2017; 66(2): 437-447. [DOI:10.2337/db16-0714]
15. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, Manku H, Vyse TJ, Roncador G, Huttley GA, Goodnow CC, Vinuesa CG, Cook MC. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis and rheumatism 2010; 62(1): 234-244. [DOI:10.1002/art.25032]
16. Arroyo-Villa I, Bautista-Caro MB, Balsa A, Aguado-Acín P, Bonilla-Hernán MG, Plasencia C, Villalba A, Nuño L, Puig-Kröger A, Mola EM, Miranda-Carús ME. Constitutively altered frequencies of circulating follicullar helper T cell counterparts and their subsets in rheumatoid arthritis. Arthritis research and therapy 2014; 16(6): 500. [DOI:10.1186/s13075-014-0500-6]
17. Christensen JR, Börnsen L, Ratzer R, Piehl F, Khademi M, Olsson T, Sørensen PS, Sellebierg F. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17-and activated B-cells and correlates with progression. PloS one 2013; 8(3): e57820. [DOI:10.1371/journal.pone.0057820]
18. Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, Qiu L, Ouya N. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. Journal of neuroimmunology 2013; 256(1-2): 55-61. [DOI:10.1016/j.jneuroim.2012.12.001]
19. Xu Y, Xu H, Zhen Y, Sang X, Wu H, Hu C, Ma Z,Yu M,Yi H. Imbalance of circulatory t follicular helper and t follicular regulatory cells in patients with ANCA-associated vasculitis. Mediators of inflammation 2019; 8421479. [DOI:10.1155/2019/8421479]
20. Zhu C, Ma J, Liu Y, Tong J, Tian J, Chen J, Tang X, Xu H, Lu L, Wang S. Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. The journal of clinical endocrinology and metabolism 2012; 97(3): 943-950. [DOI:10.1210/jc.2011-2003]
21. Huang YX, Zhao QY, Wu LL, Xie DY, Gao ZL, Deng H. Increased CCR7loPD-1hiCXCR5+CD4+ T cells in peripheral blood mononuclear cells are correlated with immune activation in patients with chronic HBV infection. Canadian journal of gastroenterology and hepatology 2018; 2018: 1020925. [DOI:10.1155/2018/1020925]
22. Ding R, Gao W, He Z, Wu F, Chu Y, Wu J, Ma L, Liang CH. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease. International immunopharmacology 2017; 52: 318-323. [DOI:10.1016/j.intimp.2017.09.028]
23. Wang Q, Zhai X, Chen X, Lu J, Zhang Y, Huang Q. Dysregulation of circulating CD4+CXCR5+ T cells in type 2 diabetes mellitus. Acta pathologica, microbiologica, et immunologica scandinavica 2015; 123(2): 146-151. [DOI:10.1111/apm.12330]
24. Shi W, Li X, Cha Z, Sun S, Wang L, Jiao S, Yang B, Shi Y, Wang Z, WU Z, Dai G. Dysregulation of circulating follicular helper T cells in nonsmall cell lung cancer. DNA and cell biology 2014; 33(6): 355-360. [DOI:10.1089/dna.2013.2332]
25. Xiao H, Luo G, Son H, Zhou Y, Zheng W. Upregulation of peripheral CD4+CXCR5+ T cells in osteosarcoma. Tumour biology 2014; 35(6): 5273-5279. [DOI:10.1007/s13277-014-1686-6]
26. Wang Y, Wang L, Yang H, Yuan W, Ren J, Bai Y. Activated circulating t follicular helper cells are associated with disease severity in patients with psoriasis. Journal of immunology research 2016; 2016: 7346030. [DOI:10.1155/2016/7346030]
27. Cha Z, Zang Y, Guo H, Rechlic JR, Olasnova LM, Gu H, Tu X, Song H, Qian B. Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour biology 2013; 34(6): 3579-3585. [DOI:10.1007/s13277-013-0937-2]
28. Zhang L, Li W, Cai Y, Liu X, Peng Q, Liang L. Aberrant expansion of circulating CD4+ CXCR5+ CCR7lo PD1hi Tfh precursor cells in idiopathic inflammatory myopathy. International journal of rheumatic diseases 2020; 23(3): 397-405. [DOI:10.1111/1756-185X.13782]
29. Xu M, Jiang Y, Zhang J, Zheng Y, Liu D, Guo L, Yang S. Variation in IL-21-secreting circulating follicular helper T cells in Kawasaki disease. BMC immunology 2018; 19(1): 43. [DOI:10.1186/s12865-018-0282-8]
30. Szabó K, Papp G, Szántó A, Tarr T, Zeher M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren's syndrome and systemic lupus erythematosus. Clinical and experimental immunology 2016; 183(1): 76-89. [DOI:10.1111/cei.12703]
31. Zhang Y, Vittinghoff E, Pletcher MJ, Allen NB, Zeki Al Hazzouri A, Yaffe K, Balte PP, Alonso A, Newman AB, Ives DG, Rana JS, Lloyd-Jones D, Vasan RS, Bibbins-Domingo K, Gooding HC, de Ferranti SD, Oelsner EC, Moran AE. Associations of blood pressure and cholesterol levels during young adulthood with later cardiovascular events. Journal of the American college of cardiology 2019; 74(3): 330-341. [DOI:10.1016/j.jacc.2019.03.529]
32. Wadhera RK, Steen DL, Khan I, Giugliano RP, Foody JM. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. Journal of clinical lipidology 2016; 10(3): 472-489. [DOI:10.1016/j.jacl.2015.11.010]
33. Li Q, Wang Y, Li H, Shen G, Hu S. Ox-LDL influences peripheral Th17/Treg balance by modulating Treg apoptosis and Th17 proliferation in atherosclerotic cerebral infarction. Cellular physiology and biochemistry 2014; 33(6): 1849-1862. [DOI:10.1159/000362963]
34. Hu X, Wang Y, Hao LY, Liu X, Lesch CA, Sanchez BM, Wendling jm, morgan rw, aicher t, carter ll, toofood p, glick gd. sterol metabolism controls t(h)17 differentiation by generating endogenous rorγ agonists. Nature chemical biology 2015; 11: 141-147. [DOI:10.1038/nchembio.1714]
35. Ryu H, Lim H, Choi G, Park YJ, Cho M, Na H, Ahn CW, Kim WU, Lee SH, Chung Y. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nature immunology 2018; 19: 583-593. [DOI:10.1038/s41590-018-0102-6]
36. Ballesteros-Tato A, León B, Graf BA, Moquin A, Adams PS, Lund FE, Randall T. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 2012; 36(5): 847-856. [DOI:10.1016/j.immuni.2012.02.012]
37. Yang C, Sun Z, Li Y, Ai J, Sun Q, Tian Y. The correlation between serum lipid profile with carotid intima-media thickness and plaque. BMC cardiovascular disorders 2014; 14: 181. [DOI:10.1186/1471-2261-14-181]
38. Lux SE, Levy RI, Gotto AM, Fredrickson DS. Studies on the protein defect in Tangier disease. Isolation and characterization of an abnormal high density lipoprotein. The Journal of clinical investigation 1972; 51: 2505-2519. [DOI:10.1172/JCI107066]
39. Kim KD, Lim HY, Lee HG, Yoon DY, Choe YK, Choi I, Paik SG, Sangkim Y,Yang Y, Seoklim J. Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochemical and biophysical research communications 2005; 338: 1126-1136. [DOI:10.1016/j.bbrc.2005.10.065]
40. Mohanta SK, Yin C, Peng L, Srikakulapu P, Bontha V, Hu D, Weih F,Weber C, Gerdes N, Andreas J, Habenicht. Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis. Circulation research 2014; 114: 1772-1787. [DOI:10.1161/CIRCRESAHA.114.301137]
41. Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, Taylor AM, Mcnamara CA,Kronenberaq M,Crotty S,Thomas M,Thomas S, Ary G. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nature communications 2018; 9: 1095. [DOI:10.1038/s41467-018-03493-5]
42. Wilhelm AJ, Zabalawi M, Owen JS, Shah D, Grayson JM, Major AS, Bhat S, Gibbs D, Thomas M, Sorci G,Thomas S. Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr-/-, ApoA-I-/- mice. The Journal of biological chemistry 2010; 285: 36158-36169. [DOI:10.1074/jbc.M110.134130]
43. Guasti L, Maresca AM, Schembri L, Rasini E, Dentali F, Squizzato A, Klersy C, Robustelli T, Mongiradi C, Campiotti L, Ageno W, Grandi AM, Cosentino M, Marino F. Relationship between regulatory T cells subsets and lipid profile in dyslipidemic patients: a longitudinal study during atorvastatin treatment. BMC cardiovascular disorders 2016; 16: 26. [DOI:10.1186/s12872-016-0201-y]
44. Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, Renlund DG, Muhlestein JB. Which white blood cell subtypes predict increased cardiovascular risk? Journal of the american college of cardiology 2005; 45: 1638-1643. [DOI:10.1016/j.jacc.2005.02.054]
45. Kim S, Eliot M, Koestler DC, Wu WC, Kelsey KT. Association of neutrophil-to-lymphocyte ratio with mortality and cardiovascular disease in the jackson heart study and modification by the duffy antigen variant. JAMA cardiology 2018; 3(6): 455-462. [DOI:10.1001/jamacardio.2018.1042]
46. Balta S, Ozturk C, Balta I, Demirkol S, Demir M, Celik T. The neutrophil-lymphocyte ratio and inflammation. Angiology 2016; 67(3): 298-299. [DOI:10.1177/0003319715615252]
47. Kalay N, Dogdu O, Koc F, Yarlioglues M, Ardic I, Akpek M, Cicek D, Oguzhan A, Ergin A, Kaya MG. Hematologic parameters and angiographic progression of coronary atherosclerosis. Angiology 2012; 63(3): 213-217. [DOI:10.1177/0003319711412763]
48. Nilsson L, Wieringa WG, Pundziute G, Gjerde M, Engvall J, Swahn E, Jonason L. Neutrophil/Lymphocyte ratio is associated with non-calcified plaque burden in patients with coronary artery disease. PLoS one 2014; 9(9): e108183. [DOI:10.1371/journal.pone.0108183]
49. Sari I, Sunbul M, Mammadov C, Durmus E, Bozbay M, Kivrak T, Gerin F. Relation of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio with coronary artery disease severity in patients undergoing coronary angiography. Kardiologia polska 2015; 73(12): 1310-1316. [DOI:10.5603/KP.a2015.0098]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb