Volume 25, Issue 2 (3-2021)                   IBJ 2021, 25(2): 78-87 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani Y, Amoabediny G, Mohammadi J, Zandieh-Doulabi B, Klein-Nulend J, Helder M N. Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration. IBJ 2021; 25 (2) :78-87
URL: http://ibj.pasteur.ac.ir/article-1-3091-en.html
Abstract:  
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/β-tricalcium phosphate (PLGA/β-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods: Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results: The 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion: The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation.

References
1. Chiarello E, Cadossi M, Tedesco G, Capra P, Calamelli C, Shehu A, Giannini S. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging clinical and experimental research 2013; 25 (Suppl 1): S101-S103. [DOI:10.1007/s40520-013-0088-8]
2. Yu NYC, Schindeler A, Little DG, Ruys AJ. Biodegradable poly(α-hydroxy acid) polymer scaffolds for bone tissue engineering. Journal of biomedical materials research 2010; 93(1): 285-295. [DOI:10.1002/jbm.b.31588]
3. Felfel RM, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomedical materials 2016; 11(1): 015011. [DOI:10.1088/1748-6041/11/1/015011]
4. Li Y, Liao C, Tjong SC. Synthetic biodegradable aliphatic polyester nanocomposites reinforced with nanohydroxyapatite and/or graphene oxide for bone tissue engineering applications. Nanomaterials (Basel) 2019; 9(4): 590. [DOI:10.3390/nano9040590]
5. Arul KT, Manikandan E, Ladchumananandasivam R. Polymer-based calcium phosphate scaffolds for tissue engineering applications. In: Grumezescu AM, editor. Nanoarchitectonics in biomedicine. Norwich: William Andrew Publishing; 2019. p. 585-618. [DOI:10.1016/B978-0-12-816200-2.00011-6]
6. Ramesh N, Moratti SC, Dias GJ. Hydroxyapatite-polymer biocomposites for bone regeneration: a review of current trends. Journal of biomedical materials research 2018; 106(5): 2046-2057. [DOI:10.1002/jbm.b.33950]
7. Yoshida T, Miyaji H, Otani K, Inoue K, Nakane K, Nishimura H, Ibara A, Shimada A, Ogawa K, Nishida E, Sugaya T, Sun L, Fugetsu B, Kawanami M. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Journal of periodontal research 2015; 50(2): 265-273. [DOI:10.1111/jre.12206]
8. Lee SK, Han CM, Park W, Kim IH, Joung YK, Han DK. Synergistically enhanced osteoconductivity and anti-inflammation of PLGA/β-TCP/Mg(OH)2 composite for orthopedic applications. Materials science and engineering: C 2019; 94: 65-75. [DOI:10.1016/j.msec.2018.09.011]
9. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials 2018; 3(3): 278-314. [DOI:10.1016/j.bioactmat.2017.10.001]
10. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DW. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone research 2013; 1(3): 216-248. [DOI:10.4248/BR201303002]
11. Geven MA, Grijpma DW. Additive manufacturing of composite structures for the restoration of bone tissue. Multifunctional materials 2019; 2(2): 024003. [DOI:10.1088/2399-7532/ab201f]
12. Radenkovic D, Solouk A, Seifalian A. Personalized development of organs using 3D printing technology. Medical hypotheses 2016; 87: 30-33. [DOI:10.1016/j.mehy.2015.12.017]
13. Endres S, Hiebl B, Hägele J, Beltzer C, Fuhrmann R, Jäger V, Almeida M, Costa E, Santos C, Traupe H, Jung EM, Prantl L, Jung F, Wilke A, Franke RP. Angiogenesis and healing with non-shrinking, fast degradeable PLGA/CaP scaffolds in critical-sized defects in the rabbit femur with or without osteogenically induced mesenchymal stem cells. Clinical hemorheology and microcirculation 2011; 48(1): 29-40. [DOI:10.3233/CH-2011-1406]
14. Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxy-apatite porous composites for bone tissue engineering. I. Preparation and morphology. Journal of biomedical materials research 1999; 44(4): 446-455. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F [DOI:10.1002/(SICI)1097-4636(19990315)44:43.0.CO;2-F]
15. Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P. Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials (Basel) 2016; 9(12): 992. [DOI:10.3390/ma9120992]
16. Sharma K, Bullock A, Ralston D, MacNeil S. Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute. Burns 2014; 40(5): 957-965. [DOI:10.1016/j.burns.2013.09.026]
17. Kroeze RJ, Knippenberg M, Helder MN. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells. Methods in molecular biology 2011; 702: 233-248. [DOI:10.1007/978-1-61737-960-4_17]
18. Cipitria A, Lange C, Schell H, Wagermaier W, Reichert JC, Hutmacher DW, Fratzl P, Duda GN. Porous scaffold architecture guides tissue formation. Journal of bone and mineral research 2012; 27(6): 1275-1288. [DOI:10.1002/jbmr.1589]
19. Sicchieri LG, Crippa GE, De Oliveira PT, Beloti MM, Rosa AL. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Journal of tissue engineering and regenerative medicine 2012; 6(2): 155-162. [DOI:10.1002/term.422]
20. Werner M, Kurniawan NA, Bouten CV. Cellular geometry sensing at different length scales and its implications for scaffold design. Materials (Basel) 2020; 13(4): 963. [DOI:10.3390/ma13040963]
21. Cristofaro F, Gigli M, Bloise N, Chen H, Bruni G, Munari A, Moroni L, Lotti N, Visai L. Influence of the nanofiber chemistry and orientation of biodegradable poly (butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration. Nanoscale 2018; 10(18):8689-8703. [DOI:10.1039/C8NR00677F]
22. Phadke A, Hwang YS, Kim SH, Kim SH, Yamaguchi T, Masuda K, Varghese S. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. European cells and materials 2013; 25: 114-129. [DOI:10.22203/eCM.v025a08]
23. Deng Y, Liu X, Xu A, Wang L, Luo Z, Zheng Y, Deng F, Wei J, Tang Z, Wei S. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxy-apatite composite. International journal of nanomedicine 2015; 10: 1425-1447. [DOI:10.2147/IJN.S75557]
24. Zan X, Sitasuwan P, Feng S, Wang Q. Effect of roughness on in situ biomineralized CaP-collagen coating on the osteogenesis of mesenchymal stem cells. Langmuir 2016; 32(7): 1808-1817. [DOI:10.1021/acs.langmuir.5b04245]
25. Teo BKK, Wong ST, Lim CK, Kung TYS, Yap CH, Ramagopal Y, Romer LH, Yim EKF. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS nano 2013; 7(6): 4785-4798. [DOI:10.1021/nn304966z]
26. Tserepi A, Gogolides E, Bourkoula A, Kanioura A, Kokkoris G, Petrou P, Kakabakos S. Plasma nanotextured polymeric surfaces for controlling cell attachment and proliferation: a short review. Plasma chemistry and plasma processing 2016; 36(1): 107-120. [DOI:10.1007/s11090-015-9674-1]
27. Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL. Effect of surface roughness of ground titanium on initial cell adhesion. Biomolecular engineering 2004; 21(3-5): 93-97. [DOI:10.1016/j.bioeng.2004.05.001]
28. Andrukhov O, Huber R, Shi B, Berner S, Rausch-Fan X, Moritz A, Spencer ND, Schedle A. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dental materials 2016; 32(11): 1374-1384. [DOI:10.1016/j.dental.2016.08.217]
29. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomedical materials 2009; 4(4): 045002. [DOI:10.1088/1748-6041/4/4/045002]
30. Itoh M, Shimazu A, Hirata I, Yoshida Y, Shintani H, Okazaki M. Characterization of CO3Ap-collagen sponges using X-ray high-resolution microtomography. Biomaterials 2004;25(13):2577-2583. [DOI:10.1016/j.biomaterials.2003.09.071]
31. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bünger C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 2007;28(6):1036-1047. [DOI:10.1016/j.biomaterials.2006.10.003]
32. Kasten P, Beyen I, Niemeyer P, Luginbühl R, Bohner M, Richter W. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta biomaterialia 2008;4(6):1904-1915. [DOI:10.1016/j.actbio.2008.05.017]
33. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials research 2019; 23: 4. [DOI:10.1186/s40824-018-0149-3]
34. Tsukanaka M, Fujibayashi S, Otsuki B, Takemoto M, Matsuda S. Osteoinductive potential of highly purified porous β-TCP in mice. Journal of materials science: materials in medicine 2015; 26(3): 132. [DOI:10.1007/s10856-015-5469-4]
35. Cheng L, Ye F, Yang R, Lu X, Shi Y, Li L, Fan H, Bu H. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta biomaterialia 2010; 6(4): 1569-1574. [DOI:10.1016/j.actbio.2009.10.050]
36. Chen G, Dong C, Yang L, Lv Y. 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS applied materials and interfaces 2015; 7(29): 15790-15802. [DOI:10.1021/acsami.5b02662]
37. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell motility and cytoskeleton 2005; 60(1): 24-34. [DOI:10.1002/cm.20041]
38. Zhao H, Li L, Ding S, Liu C, Ai J. Effect of porous structure and pore size on mechanical strength of 3D-printed comby scaffolds. Materials letters 2018; 223: 21-24. [DOI:10.1016/j.matlet.2018.03.205]
39. Fukuda N, Kanazawa M, Tsuru K, Tsuchiya A, Sunarso, Toita R, Mori Y, Nakashima Y, Ishikawa K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Scientific reports 2018; 8: 16887. [DOI:10.1038/s41598-018-35313-7]
40. Hashida Y, Nakahama K, Shimizu K, Akiyama M, Harada K, Morita I. Communication-dependent mineralization of osteoblasts via gap junctions. Bone 2014; 61: 19-26. [DOI:10.1016/j.bone.2013.12.031]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb