Volume 24, Issue 6 (11-2020)                   IBJ 2020, 24(6): 370-378 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Poursheikhani A, Yousefi H, Tavakoli-bazzaz J, Ghaffari S H. EGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells. IBJ 2020; 24 (6) :370-378
URL: http://ibj.pasteur.ac.ir/article-1-3081-en.html
Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of epidermal growth factor receptor (EGFR) with resistance to cytotoxic chemotherapies, hormone therapy, and radiotherapy in the cancers. These studies have highlighted the role of EGFR as an attractive therapeutic target in cisplatin-resistant EOC cells. Methods: The human ovarian cell lines (SKOV3 and OVCAR3) were cultured according to ATCC recommendations. The MTT assay was used to determine the chemosensitivity of the cell lines in exposure to cisplatin and erlotinib. The qRT-PCR was applied to analyze the mRNA expression of the desired genes. Results: Erlotinib in combination with cisplatin reduced the cell proliferation in the chemoresistant EOC cells in comparison to monotherapy of the drugs (p < 0.05). Moreover, erlotinib/cisplatin combination synergistically decreased the expression of anti-apoptotic and also increased pro-apoptotic genes expression (p < 0.05). Cisplatin alone could increase the expression of multi-drug resistant genes. The data suggested that EGFR and cisplatin drive chemoresistance in the EOC cells through MEKK signal transduction as well as through EGFR/MEKK pathways in the cells, respectively. Conclusion:  Our findings propose that EGFR is an attractive therapeutic target in chemoresistant EOC to be exploited in translational oncology, and erlotinib/cisplatin combination treatment is a potential anti-cancer approach to overcome chemoresistance and inhibit the proliferation of the EOC cells.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

1. Yousefi H, Momeny M, Ghaffari SH, Parsanejad N, Poursheikhani A, Javadikooshesh S, Zarrinrad G, Esmaeili F, Alishahi Z, Sabourinejad Z, Sankanian G, Shamsaiegahkani S, Bashash D, Shahsavani N, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. Tumori journal 2018; 105(1): 84-91. [DOI:10.1177/0300891618784790]
2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Mia M, Ahmedin J, Rebecca L, Ovarian cancer statistics. CA: a cancer journal for clinicians 2018; 68(4): 284-296. [DOI:10.3322/caac.21456]
3. Gottschalk N, Kimmig R, Lang S, Singh M, Brandau S. Anti-epidermal growth factor receptor (EGFR) antibodies overcome resistance of ovarian cancer cells to targeted therapy and natural cytotoxicity. International journal of molecular sciences 2012; 13(9): 12000-12016. [DOI:10.3390/ijms130912000]
4. Korkmaz T, Seber S, Basaran G. Review of the current role of targeted therapies as maintenance therapies in first and second line treatment of epithelial ovarian cancer; In the light of completed trials. Critical reviews in oncology/hematology 2016; 98: 180-188. [DOI:10.1016/j.critrevonc.2015.10.006]
5. Zhang P, Zhang P, Zhou M, Jiang H, Zhang H, Shi B, Exon 4 deletion variant of epidermal growth factor receptor enhances invasiveness and cisplatin resistance in epithelial ovarian cancer. Carcinogenesis 2013; 34(11): 2639-2646. [DOI:10.1093/carcin/bgt216]
6. Granados ML, Hudson LG, Samudio-Ruiz SL. Contributions of the epidermal growth factor receptor to acquisition of platinum resistance in ovarian cancer cells. PLoS one 2015; 10(9): e0136893. [DOI:10.1371/journal.pone.0136893]
7. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin cancer research 2001; 7(10): 2958-2970.
8. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. Journal of clinical oncology 2003; 21(14): 2787-2799. [DOI:10.1200/JCO.2003.01.504]
9. Garces ÁHI, Dias MSF, Paulino E, Ferreira CGM, de Melo AC. Treatment of ovarian cancer beyond chemotherapy: Are we hitting the target? Cancer chemotherapy and pharmacology 2015; 75(2): 221-234. [DOI:10.1007/s00280-014-2581-y]
10. Sheng Q, Liu J. The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. British journal of cancer 2011; 104(8): 1241-1245. [DOI:10.1038/bjc.2011.62]
11. Prewett MC, Hooper AT, Bassi R, Ellis LM, Waksal HW, Hicklin DJ. Enhanced antitumor activity of anti epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clinical cancer research 2002; 8(5): 994-1003.
12. Bruns CJ, Harbison MT, Davis DW, Portera CA, Tsan R, McConkey DJ. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clinical cancer research 2000; 6(5): 1936-1948.
13. Kishida O, Miyazaki Y, Murayama Y, Ogasa M, Miyazaki T, Yamamoto T, Watabe K, Tsustsuj S,Kiyohara T, Shimomura L, Shinomura Y. Gefitinib (Iressa, ZD1839) inhibits SN38-triggered EGF signals and IL-8 production in gastric cancer cells. Cancer chemotherapy and pharmacology 2005; 55(6): 584-594. [DOI:10.1007/s00280-004-0959-y]
14. Li T, Ling YH, Goldman ID, Perez-Soler R. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clinical cancer research 2007; 13(11): 3413-3422. [DOI:10.1158/1078-0432.CCR-06-2923]
15. Madamsetty VS, Pal K, Dutta SK, Wang E, Thompson JR, Banerjee RK, Caulfield TR, Mody K, Yen Y, Mukhopadhyay D, Huanq HS. Design and evaluation of PEGylated liposomal formulation of a novel multikinase inhibitor for enhanced chemosensitivity and inhibition of metastatic pancreatic ductal adenocarcinoma. Bioconjugate chemistry 2019; 30(10): 2703-2713. [DOI:10.1021/acs.bioconjchem.9b00632]
16. Bareschino M, Schettino C, Troiani T, Martinelli E, Morgillo F, Ciardiello F. Erlotinib in cancer treatment. Annals of oncology 2007; 18(6): 35-41. [DOI:10.1093/annonc/mdm222]
17. Coleman RL, Monk BJ, Sood AK, Herzog TJ. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nature reviews clinical oncology 2013; 10(4): 211-224. [DOI:10.1038/nrclinonc.2013.5]
18. Dasari SR, Velma V, Yedjou CG, Tchounwou PB. Preclinical assessment of low doses of cisplatin in the management of acute promyelocytic leukemia. International journal of cancer research and molecular mechanisms 2015; 1(3): doi: 10.16966/2381-3318.113. [DOI:10.16966/2381-3318.113]
19. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer research 2010; 70(2): 440-446. [DOI:10.1158/0008-5472.CAN-09-1947]
20. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature reviews cancer 2005; 5(5): 355-366. [DOI:10.1038/nrc1611]
21. Macleod K, Mullen P, Sewell J, Rabiasz G, Lawrie S, Miller E, Smyth JF, Langdon SP. Altered ErbB receptor signaling and gene expression in cisplatin-resistant ovarian cancer. Cancer research 2005; 65(15): 6789-6800. [DOI:10.1158/0008-5472.CAN-04-2684]
22. Benhar M, Engelberg D, Levitzki A. Cisplatin-induced activation of the EGF receptor. Oncogene 2002; 21(57): 8723-8731. [DOI:10.1038/sj.onc.1205980]
23. Yue P, Zhang X, Paladino D, Sengupta B, Ahmad S, Holloway RW, Ingertsoll SB, Turkson J. Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene 2012; 31(18): 2309-2322. [DOI:10.1038/onc.2011.409]
24. Wu D, Wu T, Wu J, Cheng YW, Chen YC, Lee M. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene 2014; 33(35): 4385-4395. [DOI:10.1038/onc.2013.389]
25. Kim SH, Ho JN, Jin H, Lee SC, Lee SE, Hong SK, Lee JW, Lee ES, Byun SS. Upregulated expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines. Investigative and clinical urology 2016; 57(1): 63-72. [DOI:10.4111/icu.2016.57.1.63]
26. Yde CW, Issinger OG. Enhancing cisplatin sensitivity in MCF-7 human breast cancer cells by downregulation of Bcl-2 and cyclin D1. International journal of oncology 2006; 29(6) :1397-1404. [DOI:10.3892/ijo.29.6.1397]
27. Zaffaroni N, Pennati M, Colella G, Perego P, Supino R, Gatti L, Pilotti S, Zunino F, Daidone MG. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cellular and molecular life sciences CMLS 2002; 59(8): 1406-1412. [DOI:10.1007/s00018-002-8518-3]
28. Reyes-González JM, Armaiz-Peña GN, Mangala LS, Valiyeva F, Ivan C, Pradeep S, Echevarría-Vargas IM, Rivera-Reyes A, Sood AK, Vivas-Mejía PE. Targeting c-MYC in platinum-resistant ovarian cancer. Molecular cancer therapeutics 2015; 14(10): 2260-2269. [DOI:10.1158/1535-7163.MCT-14-0801]
29. Brown I, Shalli K, McDonald SL, Moir SE, Hutcheon AW, Heys S. Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells. Breast cancer research 2004; 6(5): R601-R607. [DOI:10.1186/bcr918]
30. Schmider-Ross A, Pirsig O, Gottschalk E, Denkert C, Lichtenegger W, Reles A. Cyclin-dependant kinase inhibitors CIP1 (p21) and KIP1 (p27) in ovarian cancer. Journal of cancer research and clinical oncology 2006; 132: 163-170. [DOI:10.1007/s00432-005-0057-5]
31. Schuyer M, van der Burg MEL, Henzen-Logmans SC, Fieret JH, Klijn JGM, Look MP. Reduced expression of BAX is associated with poor prognosis in patients with epithelial ovarian cancer: a multifactorial analysis of TP53, p21, BAX and BCL-2. British journal of cancer 2001; 85(9): 1359-1367. [DOI:10.1054/bjoc.2001.2101]
32. Park J, San Ko Y, Yoon J, Kim MA, Park JW, Kim WH, The forkhead transcription factor FOXO1 mediates cisplatin resistance in gastric cancer cells by activating phosphoinositide 3-kinase/Akt pathway. Gastric cancer 2014; 17(3): 423-430. [DOI:10.1007/s10120-013-0314-2]
33. Qiu JG, Zhang YJ, Li Y, Zhao JM, Zhang WJ, Jiang QW, Mei XL, Xue YQ, Qin WM, Yang Y, Zheng DW, Chen Y, Wei MN, Shi Z. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget 2015; 6(17): 15494-15509. [DOI:10.18632/oncotarget.3820]
34. Tonigold M, Rossmann A, Meinold M, Bette M, Märken M, Henkenius K, Giel G, Cai C, Rodepeter FR, Beneš V, Grénman R, Carey TE, Lage H, Stiewe T, Neubauer A, Werner JA, Brendel C, Mandic R, A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53mut exhibits ATP-binding cassette transporter upregulation and high glutathione levels. Journal of cancer research and clinical oncology 2014; 140(10): 1689-1704. [DOI:10.1007/s00432-014-1727-y]
35. Lainey E, Sébert M, Thépot S, Scoazec M, Bouteloup C, Leroy C, De Botton S, Galluzzi L, Fenaux P, Kroemer G. Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell cycle 2012; 11(21): 4079-4092. [DOI:10.4161/cc.22382]
36. Nogueira Rodrigues A, Moralez G, Grazziotin R, Carmo CC, Small IA, Alves FV, Mamede M, Erlich F, Viegas C, Triginelli SA, Ferreira CG, Phase 2 trial of erlotinib combined with cisplatin and radiotherapy in patients with locally advanced cervical cancer. Cancer 2014; 120(8): 1187-1193. [DOI:10.1002/cncr.28471]
37. Zhang GN, Zhang YK, Wang YJ, Gupta P, Ashby Jr CR, Alqahtani S, Deng T, Bates SE, Kaddoumi A, Wurpel JND, Lei YX, Chen ZS. Epidermal growth factor receptor (EGFR) inhibitor PD153035 reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer: in vitro and in vivo. Cancer letters 2018; 424: 19-29. [DOI:10.1016/j.canlet.2018.02.040]
38. Wang J, Zhou JY, Wu GS. ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer research 2007; 67(24): 11933-11941. [DOI:10.1158/0008-5472.CAN-07-5185]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb