Volume 26, Issue 1 (1-2022)                   ibj 2022, 26(1): 70-76 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raji N, Majidi Zadeh T, Babaheidarian P, Houshmand M. Detection of Microsatellite Instability by High-Resolution Melting Analysis in Colorectal Cancer. ibj. 2022; 26 (1) :70-76
URL: http://ibj.pasteur.ac.ir/article-1-3062-en.html
Background: Colorectal cancer (CRC) is the third most common cancer worldwide. microsatellite instability (MSI) is a molecular marker of a deficient mismatch repair system and happens in almost 15% of CRCs. Because of a wide frequency of MSI+ CRC in Iran compared to other parts of the world, the importance of screening for this type of cancer is highlighted. Methods: The most common MSI detection technique is a fluorescent PCR-based method in which fragments are analyzed by capillary electrophoresis (CE). This technique is very time-consuming, difficult, and expensive. We sought to develop and evaluate a proper method with high accuracy, specificity, and sensitivity to screen the MSI+ CRC. A high-resolution melting (HRM) analysis procedure is relying on the analysis of the melting curve attributes. Low cost, feasibility, high specificity, and sensitivity are outstanding attributes of HRM analysis. Results: Five mononucleotide microsatellite markers, including BAT-25, BAT-26, NR-21, NR-24, and NR-27, in 25 archival CRC tumor tissue samples were compared with normal tissue adjacent using HRM method. The specificity and sensitivity of BAT-25 with HRM method were 100% compared to CE, while other markers had lower sensitivity. However, when all the markers were considered together, the sensitivity and specificity became 100%. The number of MSI+ samples was 56%, which shows a higher ratio than previous Iranian studies. The highest MSI was related to BAT-26 (52%). Conclusion: The HRM method is much simpler and more cost-effective than current MSI techniques, and its sensitivity and accuracy are comparable. Therefore, it can serve as an alternative method in cases where CE is unavailable.
Type of Study: Full Length | Subject: Molecular Genetics & Genomics

1. Esmailnia G, Montazer Haghighi M, Javari G, Parivar K, Zali MR. Microsatellite instability markers status in colorectal cancer. Zahedan journal of research in medical sciences 2013; 16(12): 26-30.
2. Dolatkhah R, Somi MH, Jabbarpour Bonyadi M, Asvadi Kermani I, Farassati Faris, Dastgiri S. Colorectal cancer in Iran: molecular epidemiology and screening strategies. Journal of cancer epidemiology 2015; 2015 Article ID: 643020 [DOI:10.1155/2015/643020]
3. Grady WM, Markowitz SD. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Digestive diseases and sciences 2015; 60(3): 762-772. [DOI:10.1007/s10620-014-3444-4]
4. Buecher B, Cacheux W, Rouleau E, Dieumegard B, Mitry E. Role of microsatellite instability in the management of colorectal cancers. Digestive and liver disease 2013; 45(6): 441-449. [DOI:10.1016/j.dld.2012.10.006]
5. Janavicius R, Matiukaite D, Jakubauskas A, Griskevicius L. Microsatellite instability detection by high-resolution melting analysis. Clinical chemistry 2010; 56(11): 1750-1757. [DOI:10.1373/clinchem.2010.150680]
6. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointestinal cancer research 2012; 5(1): 19-27.
7. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. American association for cancer research 1998; 58(22): 5248-5257.
8. Mokarram P, Rismanchi M, Alizadeh Naeeni M, Mirab Samiee S, Paryan M, Alipour A, Honardar Z, Kavousipour S, Naghibalhossaini F, Mostafavi-Pour Z, Monabati A, Hosseni SV, Shamsdin SA. Microsatellite instability typing in serum and tissue of patients with colorectal cancer: comparing real time PCR with hybridization probe and high-performance liquid chromatography. Molecular biology reports 2014; 41(5): 2835-2844. [DOI:10.1007/s11033-014-3138-1]
9. Moghbeli M, Moaven O, Dadkhah E, Farzadnia M, Roshan NM, Asadzadeh-Aghdaee H, Bahar MM, Raeisossadati R, Forghanifard MM, Bakhtiari SR, Baradaran A, Abbaszadegan MR. High frequency of microsatellite instability in sporadic colorectal cancer patients in Iran. Genetics and molecular research 2011; 10(4): 3520-3529. [DOI:10.4238/2011.December.14.4]
10. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical chemistry 2003; 49(6): 853-860. [DOI:10.1373/49.6.853]
11. Ladas I, Yu F, Leong KW, Fitarelli-Kiehl M, Song C, Ashtaputre R, Kulke M, Mamon H, Makrigiorgos GM. Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic acids research 2018; 46(12): e74. [DOI:10.1093/nar/gky251]
12. Sinicrope FA. CRC in focus: The role of microsatellite instability testing in management of colorectal cancer. Current treatment options in oncology 2015; 16(7): 30. [DOI:10.1007/s11864-015-0348-2]
13. Kohlmann W, Gruber S. Lynch Syndrome GeneReview: Microsatellite Instability (MSI) Testing. 2018.
14. Hammond MH, Fitzgiboons PL, Compton CC, Grignon DJ, Page DL, Fielding LP, Bostwick D, Pajak TF. College of American Pathologists Conference XXXV: solid tumor prognostic factors-which, how and so what? Summary document and recommendations for implementation. Cancer Committee and Conference Participants. Archives of pathology and laboratory medicine 2000; 124(7): 958-965. [DOI:10.5858/2000-124-0958-COAPCX]
15. Laiho P, Launonen V, Lahermo P, Esteller Mm, Guo Mm, Herman JG, Mecklin JP, Järvinen H, Sistonen P, Kim KM, Shibata D, Houlston RS, Aaltonen LA. Low-level microsatellite instability in most colorectal carcinomas. Cancer research 2002; 62(4): 1166-1170.
16. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Corrigendum: Classification and characterization of microsatellite instability across 18 cancer types. Nature medicine 2018; 24(4): 525. [DOI:10.1038/nm0418-525a]
17. Lee V, Murphy A, Le DT, Diaz LA Jr. Mismatch repair deficiency and response to immune checkpoint blockade. The oncologist 2016; 21(10): 1200-1211. [DOI:10.1634/theoncologist.2016-0046]
18. Rouleau E, Lefol C, Bourdon V, Coulet F, Noguchi T, Soubrier F, Bièche I, Olschwang S, Sobol H, Lidereau R. Quantitative PCR high‐resolution melting (qPCR‐HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome. Human mutation 2009; 30(6): 867-875. [DOI:10.1002/humu.20947]
19. Ladas I, Fitarelli-Kiehl M, Song C, Adalsteinsson VA, Parsons HA, Lin NU, Wagle N, Makrigiorgos GM. Multiplexed elimination of wild-type DNA and high-resolution melting prior to targeted resequencing of liquid biopsies. Clinical chemistry 2017; 63(10): 1605-1613. [DOI:10.1373/clinchem.2017.272849]
20. Dietmaier W, Hofstädter F. Detection of microsatellite instability by real time PCR and hybridization probe melting point analysis. Laboratory investigation 2001; 81(10): 1453. [DOI:10.1038/labinvest.3780358]
21. Bishehsari F, Mahdavinia M, Malekzadeh R, Verginelli F, Catalano T, Sotoudeh M, Bazan V, Agnese V, Esposito DL, De Lellis L, Semeraro D, Colucci G, Hormazdi M, Rakhshani N, Rakhshani N, Cama A, Piantelli M, Iacobelli S, Russo A, Mariani-Costantini R, Gruppo Oncologico dell'Italia Meridionale. Patterns of K-ras mutation in colorectal carcinomas from Iran and Italy (a Gruppo Oncologico dell'Italia Meridionale study): Influence of microsatellite instability status and country of origin. Annals of oncology 2006; 17(suppl-7): vii91-vii96. [DOI:10.1093/annonc/mdl959]
22. Brim H, Mokarram P, Naghibalhossaini F, Saberi-Firoozi M, Al-Mandhari M, Al-Mawaly K, Al-Mjeni R, Al-Sayegh A, Raeburn S, Lee E, Giardiello F, Smoot DT, Vilkin A, Boland CR, Goel A, Hafezi M, Nouraie M, Ashktorab H. Impact of BRAF, MLH1 on the incidence of microsatellite instability high colorectal cancer in populations based study. Molecular cancer 2008; 7(1): 68. [DOI:10.1186/1476-4598-7-68]
23. Zeinalian M, Emami MH, Salehi R, Naimi A, Kazemi M, Hashemzadeh-Chaleshtori M. Molecular analysis of Iranian colorectal cancer patients at risk for Lynch syndrome: a new molecular, clinicopathological feature. Journal of gastrointestinal cancer 2015; 46(2): 118-125. [DOI:10.1007/s12029-015-9696-1]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb