Volume 25, Issue 3 (5-2021)                   IBJ 2021, 25(3): 180-192 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rastegar Ramsheh M, Behnamghader A, Khanlarkhani A. Sol-Gel Synthesis, in vitro Behavior, and Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation and Proliferation of Bioactive Glass 58S. IBJ 2021; 25 (3) :180-192
URL: http://ibj.pasteur.ac.ir/article-1-3056-en.html
Abstract:  
Background: Bioactive glasses 58S, are silicate-based materials containing calcium and phosphate, which dissolved in body fluid and bond to the bone tissue. This type of bioactive glass is highly biocompatible and has a wide range of clinical applications. Methods: The 58S glass powders were synthesized via sol-gel methods, using tetraethyl orthosilicate, triethyl phosphate, and calcium nitrate, as precursors. Upon the analyses of phase and chemical structures of bioactive glass in different gelation times (12, 48, and 100 h), the appropriate heat treatment (at 525, 575, and 625 °C) was performed to eliminate nitrate compounds and stabilize the glass powder samples. The in vitro assay in SBF solution revealed the bioactivity of the synthesized 58S glass through the morphological (SEM), chemical structure (FTIR), release of calcium, phosphorous and silicon elements, pH variations, and weight loss measurements. The behavior of MSCs in the presence of bioactive glass powders was studied by MTT cytotoxicity, cell staining, ALP activity and biomineralization tests, as well as by the evaluation of ALP, osteocalcin, osteonectin, collagen I, and RUNX2 gene expression. Results: The results confirmed a gelation time of 100 h and a calcination temperature of 575 °C at optimal conditions for the synthesis of nitrate-free bioactive glass powders. Conclusion: The glass spherical nanoparticles in the range of 20-30 nm possess the improved bioactivity and osteogenic properties as demanded for bone tissue engineering.
Type of Study: Full Length/Original Article | Subject: Related Fields

References
1. Karimi M, Kalantarzadeh R, Saba G, Hafshejani TM, Shansi M, Jahangir V, Jodaei A, Sadeghinik A. Apacite nanocomposites: A novel bioactive, biocompatible and osteogenic product originated from atmospheric carbon dioxide processed spontaneously in Calcoline. Chemical engineering journal 2018; 353: 679-688. [DOI:10.1016/j.cej.2018.07.186]
2. T. J. Blokhuis. Management of traumatic bone defects: Metaphyseal versus diaphyseal defects. Injury 2017; 48 Suppl 1: S91-S93. [DOI:10.1016/j.injury.2017.04.021]
3. X. Zhang, B. Xu, F. Gao, P. Zheng, and W. Liu. Repair of volumetric bone defects with a high strength BMP-loaded-mineralized hydrogel tubular scaffold. Jouranl of materials chemistry B 2017; 5: 5588-5596. [DOI:10.1039/C7TB01279A]
4. Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clinical orthopaedics and related research 1999; 360: 71-86. [DOI:10.1097/00003086-199903000-00010]
5. S. Xu, J. Liu, L. Zhang, F. Yang, P. Tang, and D. Wu, Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. Journal of materials chemistry B 2017; 5 (30): 6110-6118. [DOI:10.1039/C7TB00790F]
6. Calori GM, Mazza E, Colombo M, Ripamonti C.
7. The use of bone-graft substitutes in large bone
8. defects: any specific needs? Injury 2011; 42 Suppl 2: S56-S63. [DOI:10.1016/j.injury.2011.06.011]
9. Hartigan BJ, Cohen MS. Use of bone graft substitutes and bioactive materials in treatment of distal radius fractures. Hand clinics 2005; 21(3): 449-454. [DOI:10.1016/j.hcl.2005.02.006]
10. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury 2011; 42 Suppl 2: S16-S21. [DOI:10.1016/j.injury.2011.06.199]
11. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36 Suppl 3: S20-S27. [DOI:10.1016/j.injury.2005.07.029]
12. Betz RR. Limitations of autograft and allograft: new synthetic solutions. Orthopedics 2002; 25(5): S561-S570. [DOI:10.3928/0147-7447-20020502-04]
13. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. Jouranl of biomedical materials research 1971; 5(6): doi: 10.1002/jbm.820050611. [DOI:10.1002/jbm.820050611]
14. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta biomaterials 2013; 9(1): 4457-4486. [DOI:10.1016/j.actbio.2012.08.023]
15. Hench L. The story of Bioglass. Journal of matrials science: materiasl in medicine 2006; 17(11): 967-978. [DOI:10.1007/s10856-006-0432-z]
16. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel) 2010; 3(7): 3867-3910. [DOI:10.3390/ma3073867]
17. Jones JR, Brauer DS, Hupa L, and Greenspan DC. Bioglass and bioactive glasses and their impact on healthcare. International journal of applied glassscience 2016; 7(4): 423-434. [DOI:10.1111/ijag.12252]
18. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta biomaterialia 2017; 62: 1-28. [DOI:10.1016/j.actbio.2017.08.030]
19. Nicolini V, Caselli M, Ferrari E, Menabue L, Lusvardi G, Saladini M, Malavasi G. SiO2-CaO-P2O5 bioactive glasses: a promising curcuminoids delivery system. Materials (Basel) 2016; 9(4): 290. [DOI:10.3390/ma9040290]
20. Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K. Structural variations of bioactive glasses obtained by different synthesis routes. Ceramics international 2016; 42(13): 14700-14709. [DOI:10.1016/j.ceramint.2016.06.095]
21. Baino F, Fiorilli S, Vitale-Brovarone C. Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta biomaterials 2016; 42: 18-32. [DOI:10.1016/j.actbio.2016.06.033]
22. Ji L, Qiao W, Huang K, Zhang Y, Wu H, Miao S, Liu H, Dong Y, Zhu A, Qiu D. Synthesis of nanosized 58S bioactive glass particles by a three-dimensional ordered macroporous carbon template. Materials Science and Engineering C 2017; 75: 590-595. [DOI:10.1016/j.msec.2017.02.107]
23. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC Sol-gel based materials for biomedical applications. Progress in materials science 2016; 77: 1-79. [DOI:10.1016/j.pmatsci.2015.12.001]
24. Bui XV, Dang H. Bioactive glass 58S prepared using an innovation sol-gel process. Processing and application of ceramics 2019; 13(1): 98-103. [DOI:10.2298/PAC1901098B]
25. Luz GM, Mano JF. Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical applications. Nanotechnology 2011; 22(49): 494014. [DOI:10.1088/0957-4484/22/49/494014]
26. Kiran P, Ramakrishna V, Trebbin M, Udayashankar NK, Shashikala HD. Effective role of CaO/P2O5 ratio on SiO2-CaO-P2O5 glass system. Journal of advanced research 2017; 8(3): 279-288. [DOI:10.1016/j.jare.2017.02.001]
27. Moghanian A, Firoozi S, Tahriri M. Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass. Ceramics international 2017; 43(15): 12835-12843. [DOI:10.1016/j.ceramint.2017.06.174]
28. Jmal N, Bouaziz J. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method. Materials science and engineering C 2017; 71: 279-288. [DOI:10.1016/j.msec.2016.09.058]
29. Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A. Effect of synthetic amorphous calcium phosphate nanoparticles on the physicochemical and biological properties of resin-modified glass ionomer cements. Materials science and engineering C 2019; 98: 227-240. [DOI:10.1016/j.msec.2018.12.129]
30. Sopcak T, Medvecky L, Girman V, Durisin J. Mechanism of precipitation and phase composition of CaO-SiO2-P2O5 systems synthesized by sol-gel method. Journal of non-crystalline solids 2015; 415: 16-23. [DOI:10.1016/j.jnoncrysol.2015.02.014]
31. Catauro M, Dell'Era A, and Ciprioti SV. Synthesis, structural, spectroscopic and thermoanalytical study of sol-gel derived SiO2-CaO-P2O5 gel and ceramic materials. Thermochimica acta 2016; 625: 20-27. [DOI:10.1016/j.tca.2015.12.004]
32. Karimi M, Jodaei A, Sadeghinik A, Rastegar Ramsheh M, Mohammadi Hafshejani M, Shamsi M , Orand F, Lotfi F. Deep eutectic choline chloride-calcium chloride as all-in-one system for sustainable and one-step synthesis of bioactive fluorapatite nanoparticles. Journal of fluorine chemistry 2017; 204: 76-83. [DOI:10.1016/j.jfluchem.2017.10.011]
33. Santhiya D, Kumari Alajangi D, Anjum F, Mrugavel S, and Ganguli M. Bio-inspired synthesis of microporous bioactive glass-ceramic using CT-DNA as a template. Journal of materials chemistry B 2013; 1(45): 6329-6338. [DOI:10.1039/c3tb21212b]
34. Vallet-Regí M, eAM Romero, Ragel CV, LeGeros RZ. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. Journal of biomedical materials research 1999; 44(4): 416-421. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<416::AID-JBM7>3.0.CO;2-S [DOI:10.1002/(SICI)1097-4636(19990315)44:43.0.CO;2-S]
35. Saravanapavan P, Jones JR, Pryce RS, Hench LL. Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). Journal of biomedical materials research part A 2003; 66(1): 110-119. [DOI:10.1002/jbm.a.10532]
36. Huang K, Cai S, Xu G, Ren M, Wang X, Zhang R, Niu S, Zhao H. Sol-gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior. Surface and coatings technology 2014; 240: 137-144. [DOI:10.1016/j.surfcoat.2013.12.026]
37. Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of biomedical materials research 2002; 61(2): 301-311. [DOI:10.1002/jbm.10207]
38. Shamsi M, Karimi M, Ghollasi M, Shahrousvand M, Kamali M, Salimi A. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-poly-l-lactic acid nanofibers fabricated by electrospinning method. Materials science and engineering: C 2017; 78: 114-123. [DOI:10.1016/j.msec.2017.02.165]
39. Leonardi E, Ciapetti G, Baldini N, Novajra G, Verné E, Baino F, Vitale-Brovarone C. Response of human bone marrow stromal cells to a resorbable P2O5-SiO2-CaO-MgO-Na2O-K2O phosphate glass ceramic for tissue engineering applications. Acta biomaterials 2010; 6(2): 598-606. [DOI:10.1016/j.actbio.2009.07.017]
40. Shih YRV, Hwang YS, Phadke A, Kang H, Hwang NS, Caro EJ, Nguyen S, Siu M, Theodorakis EA, Gianneschi NC, Vecchio KS, Chien S, Lee OK, Varghese S. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proceedings of the national academy of sciences ogf the United States of America 2014; 111(3): 990-995. [DOI:10.1073/pnas.1321717111]
41. Komori T. Regulation of bone development and maintenance by Runx2. Frontiers in bioscience 2008; 13(13): 898, 2008. [DOI:10.2741/2730]
42. Phan PV, Grzanna M, Chu J, Polotsky A, El-Ghannam A, Heerden DV, Hungerford DS, Frondoza CG. The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. Journal of biomedical materials research part A. 2003; 67(3): 1001-1008. [DOI:10.1002/jbm.a.10162]
43. Sundaramurthi D, Jaidev LR, Ramana LN, Sethuraman S, Krishnan UM. Osteogenic differentiation of stem cells on mesoporous silica nanofibers. RSC advances 2015; 5(85): 69205-69214. [DOI:10.1039/C5RA07014G]
44. Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG. Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. Journal of biomedical materials research part A 2004; 69(3): 535-543. [DOI:10.1002/jbm.a.30027]
45. Gong W, Dong Y, Wang S, Gao X, Chen X, "A novel nano-sized bioactive glass stimulates osteogenesis via the MAPK pathway. RSC advances 2017; 7(23): 13760-13767. [DOI:10.1039/C6RA26713K]
46. Jell G, Stevens MM. Gene activation by bioactive glasses. Journal of materials science: materials in medicine 2006; 17(11): 997-1002. [DOI:10.1007/s10856-006-0435-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb