Volume 24, Issue 4 (7-2020)                   IBJ 2020, 24(4): 251-256 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sepanjnia A, Ghasemi H, Mohseni R, Ranjbar A, Shabani F, Salimi F et al . Effect of Cerium Oxide Nanoparticles on Oxidative Stress Biomarkers in Rats’ Kidney, Lung, and Serum. IBJ 2020; 24 (4) :251-256
URL: http://ibj.pasteur.ac.ir/article-1-3040-en.html
Abstract:  
Background: The present study aimed to evaluate the effects of different concentrations of cerium oxide nanoparticles (CONPs) on the oxidative stress (OS) status in kidney, lung, and serum of rats. Methods: Male Wistar Rats were treated intraperitoneally with 15, 30, and 60 mg/kg/day of CONPs. The biochemical parameters, including total antioxidant capacity (TAC), total thiol group (TTG), malondialdehyde (MDA), SOD (superoxide dismutase), and catalase (CAT) were assayed in serum, kidney, and lung tissues. Results: MDA decreased, but TTG and CAT increased in serum by the administration of CONPs at 15 mg/kg. In kidney homogenate obtained from the group treated with CONPs at 15 mg/kg, TAC, TTG, and CAT significantly increased compared to the control group. However, CONPs at 15, 30, and 60 mg/kg significantly decreased MDA level compared to the control group. In lung tissue, CONPs in doses of 15, 30 and 60 mg/kg significantly decreased CAT activity, TTG and TAC compared to the control group, while in kidney tissue, CONPs at the concentrations of 30 and 60 mg/kg significantly increased MDA compared to the control group. Conclusion: Our findings suggest that CONPs attenuate OS in the kidney and affect the serum levels of OS-related markers but induce OS in the lung tissue in a dose-dependent manner. 

References
1. Moridi H, Hosseini SA, Shateri H, Kheiripour N, Kaki A, Hatami M, Ranjbaran A. Protective effect of cerium oxide nanoparticle on sperm quality and oxidative damage in malathion-induced testicular toxicity in rats: An experimental study. International journal of reproductive biomedicine 2018; 16(4): 261-266. [DOI:10.29252/ijrm.16.4.261]
2. Ali D, Alarifi S, Alkahtani S, AlKahtane AA, Almalik A. Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochemistry and biophysics 2015; 71(3): 1643-1651. [DOI:10.1007/s12013-014-0386-6]
3. Sun C, Li H, Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy and environmental science 2012; 5(9): 8475-8505. [DOI:10.1039/c2ee22310d]
4. Ranjbar A, Kheiripour N, Ghasemi H, Seif Rabiei MA, Dadras F, Khoshjou F. Antioxidative effects of tempol on mitochondrial dysfunction in diabetic nephropathy. Iranian journal of kidney diseases 2018; 12(2): 84-90.
5. Singh R, Karakoti AS, Self W, Seal S, Singh S. Redox-sensitive cerium oxide nanoparticles protect human keratinocytes from oxidative stress induced by glutathione depletion. Langmuir 2016; 32(46):12202-12211. [DOI:10.1021/acs.langmuir.6b03022]
6. Chen S, Hou Y, Cheng G, Zhang C, Wang S, Zhang J. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biological trace element research 2013; 154(1): 156-166. [DOI:10.1007/s12011-013-9678-8]
7. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS nano 2012; 6(5): 3767-3775. [DOI:10.1021/nn2048069]
8. Manne ND, Arvapalli R, Nepal N, Shokuhfar T, Rice KM, Asano S, Blough ER. Cerium oxide nanoparticles attenuate acute kidney injury induced by intra-abdominal infection in Sprague-Dawley rats. Journal of nanobiotechnology 2015; 13: 75. [DOI:10.1186/s12951-015-0135-z]
9. Guo C, Smith R, Gant TW, Leonard MO. Cerium dioxide nanoparticles protect against oxidative stress induced injury through modulation of TGF-β signalling. Toxicology research 2015, 4(2): 464-475. [DOI:10.1039/C4TX00210E]
10. Nemmar A, Yuvaraju P, Beegam S, Fahim MA, Ali BH. Cerium oxide nanoparticles in lung acutely induce oxidative stress, inflammation, and DNA damage in various organs of mice. Oxidative medicine and cellular longevity 2017; doi: 10.1155/2017/9639035. [DOI:10.1155/2017/9639035]
11. Lin W, Huang YW, Zhou XD, Ma Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. International journal of toxicology 2006; 25(6): 451-457. [DOI:10.1080/10915810600959543]
12. Eom HJ, Choi J. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicology letters 2009; 187(2): 77-83. [DOI:10.1016/j.toxlet.2009.01.028]
13. Karimi J, Mohammadalipour A, Sheikh N, Khodadadi I, Hashemina M, Goudarzi F, Khanjarsim V, Solgi G, Hajilooi M, Bahabadi M, Kheiripour N, Hedayatyanfard K. Protective effects of combined Losartan and Nilotinib on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Drug and chemical toxicology 2018; 12: 1-11. [DOI:10.1080/01480545.2018.1504960]
14. Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, Reilly CM. Bio‐distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environmental toxicology 2013; 28(2): 107-118. [DOI:10.1002/tox.20704]
15. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry 1979; 95(2): 351-35