Volume 26, Issue 4 (7-2022)                   IBJ 2022, 26(4): 330-339 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi V, Esfandiary E, Ghanadian M, Ghasemi N, Rashidi B. The effect of Zingiber Officinale Extract on Preventing Demyelination of Corpus Callosum in a Rat Model of Multiple Sclerosis. IBJ. 2022; 26 (4) :330-339
URL: http://ibj.pasteur.ac.ir/article-1-2979-en.html
Background: Multiple sclerosis (MS) is the most prevalent neurological disability of young adults. Anti-inflammatory drugs have relative effects on MS. The anti-inflammatory and antioxidative effects of Zingiber officinale (ginger) have been proven in some experimental and clinical investigations. The aim of this study was to evaluate the effects of ginger extract on preventing myelin degradation in a rat model of MS.
Methods: Forty nine male Wistar rats were used in this study and divided into four control groups: the normal group, cuprizone-induced group, sham group (cuprizone [CPZ] + sodium carboxymethyl cellulose [NaCMC]), standard control group (fingolimod + cuprizone), including three experimental groups of CPZ, each receiving three different doses of ginger extract: 150, 300, and 600mg/kg /kg/day.
Results: Ginger extract of 600 mg/kg prevented corpus callosum from demyelination; however, a significant difference was observed in the fingolimod group (p < 0.05). Difference in the CPZ group was quite significant (p < 0.05).
Conclusion: Treatment with ginger inhibited demyelination and alleviated remyelination of corpus callosum in rats. Therefore, it could serve as a therapeutic agent in the MS.
Type of Study: Full Length | Subject: Related Fields

1. Compston A, Coles A. Multiple sclerosis. Lance 2008; 372(9648): 1502-1517. [DOI:10.1016/S0140-6736(08)61620-7]
2. Arjun S, Park SJ, Choi JW. Neuroprotective effects of 6-Shogaol and Its metabolite, 6-Paradol, in a mouse model of multiple sclerosis. Biomolecules and therapeutics 2019; 27(2): 152. [DOI:10.4062/biomolther.2018.089]
3. Barnett MH, Ian S. The pathology of multiple sclerosis: a paradigm shift. Current opinion in neurology 2006; 19(3): 242-247. [DOI:10.1097/01.wco.0000227032.47458.cb]
4. Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Current neuropharmacology 2011; 9(3): 409-416. [DOI:10.2174/157015911796557911]
5. Tolou-Ghamari Z. A review of geoepidemiological differences of multiple sclerosis in Iran and other Middle East countries. Archives of neuroscience 2014; 2(3): e22028. [DOI:10.5812/archneurosci.22028]
6. Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet neurology 2010; 9(5): 520-532. [DOI:10.1016/S1474-4422(10)70064-8]
7. Kurtzke JF. Epidemiology of multiple sclerosis. Does this really point toward an etiology? Lectio doctoralis. Neurological sciences 2000; 21(6): 383-403. [DOI:10.1007/s100720070055]
8. Alonso A, Hernan MA. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 2008; 71(2): 129-135. [DOI:10.1212/01.wnl.0000316802.35974.34]
9. World Health Organization and Multiple Sclerosis International Federation. Atlas: multiple sclerosis resources in the world 2008. Geneva: World Health Organization. Available at: https://apps.who.int/iris/handle/10665/43968
10. Ebers GC, Sadovnick AD. Epidemiology. In: Paty DW, Ebers GC, editors. Multiple sclerosis. Philadelphia: FA Davis; 1997. pp. 5-28.
11. Pryse-Phillips W, Costello F. The Epidemiology of Multiple Sclerosis. In: Cook SD, ed. Handbook of Multiple Sclerosis. Third Edition. New York: Marcel Dekker; 2001. pp. 15-31. [DOI:10.1201/9780824741846.ch2]
12. Siegert E, Paul F, Rothe M, Weylandt KH. The effect of omega‑3 fatty acids on central nervous system remyelination in fat-1 mice. BMC Neuroscience 2017; 18(1):19. [DOI:10.1186/s12868-016-0312-5]
13. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annual review of neuroscience 2008; 31: 247-269. [DOI:10.1146/annurev.neuro.30.051606.094313]
14. Vidaurre OG, Liu J, Haines J, Sandova J, Nowakowski R, Casaccia P. An integrated approach to design novel therapeutic interventions for demyelinating disorders. The European journal of neuroscience 2012; 35(12): 1879-1886. [DOI:10.1111/j.1460-9568.2012.08118.x]
15. Kutzelnigg A, Lassmann H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handbook of Clinical Neurology 2014; 122: 15-58. [DOI:10.1016/B978-0-444-52001-2.00002-9]
16. Steinman L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nature reviews. Drug discovery 2005; 4(6): 510-518. [DOI:10.1038/nrd1752]
17. Dorr J, Bitsch A, Schmailzl KJ, Chan A, von Ahsen N, Hummel M, Varon R, Lill CM, Vogel HP, Zipp F. Severe cardiac failure in a patient with multiple sclerosis following low-dose mitoxantrone treatment. Neurology 2009; 73(12): 991-993. [DOI:10.1212/WNL.0b013e3181b878f6]
18. Birnbaum G, Cree B, Altafullah I, Zinser M, Reder AT. Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology 2008; 71(18): 1390-1395. [DOI:10.1212/01.wnl.0000319698.40024.1c]
19. Mahdy KA, Gouda NAM, Marrie AEFH, Yassin NAZ, El-Shenawy SMA, Farrag ARH, Ibrahim BMM. Protective effect of ginger (Zingiber officinale) on Alzheimer's disease induced in rats. J Neuroinfectious diseases 2014; 5(2): 159.
20. Esfandiary E, Karimipour M, Mardani M, Ghanadian M, Alaei HA, Mohammadnejad D, Esmaeili A. Neuroprotective effects of Rosa damascena extract on learning and memory in a rat model of amyloid‑β‑induced Alzheimers disease. Advanced biomedical research 2015; 4: 131 [DOI:10.4103/2277-9175.161512]
21. Esfandiary E, Abdolali Z, Omranifard V, Ghanadian M, Bagherian Sararoud R, Karimipour M, Mahaki B, Dabiri S. Novel Effects of Rosa damascena Extract on Patients with Neurocognitive Disorder and Depression: A Clinical Trial Study. International journal of preventive medicine 2018; 9: 57. [DOI:10.4103/ijpvm.IJPVM_199_17]
22. Wattanathorn J, Jittiwat J, Tongun T, Muchimapura S, Ingkaninan K. Zingiber officinale mitigates brain damage and improvesMemory impairment in focal cerebral ischemic rat. Evidence-based complementary and alternative medicine 2011; 2011:429505 [DOI:10.1155/2011/429505]
23. Park EJ, Pizzuto JM. Botanicals in cancer chemoprevent ion. Cancer metastasis reviews 2002; 21(3-4): 231-255. [DOI:10.1023/A:1021254725842]
24. Sharma SS, Gupta YK. Effect of ginger (Zingiber officinale) against cisplatin induced delay in gastric emptying in rats. Journal of ethnopharmacology 1998; 62(1): 49-55. [DOI:10.1016/S0378-8741(98)00053-1]
25. Young HY, Luo YL, Cheng HY, Hsieh WC, Liao JC, Peng WH. Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of ethnopharmacology 2005; 96(1-2): 207-210. [DOI:10.1016/j.jep.2004.09.009]
26. Katiyar SK, Agarwal R, Mukhtar H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer research 1996; 56(5): 1023-1030.
27. Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. Journal of neuroimmunology 2018; 324: 54-75. [DOI:10.1016/j.jneuroim.2018.09.003]
28. Shanmugam KR, Mallikarjuna K, Kesireddy N, Reddy KS. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food and chemical toxicology 2011; 49(4): 893-897. [DOI:10.1016/j.fct.2010.12.013]
29. Aryaeian N, Tavakkoli H. Ginger and its effects on inflammatory diseases. Advances in food technology and nutritional sciences 2015; 1(4): 97-101. [DOI:10.17140/AFTNSOJ-1-117]
30. Han JJ, Li X, Ye ZQ, Lu XY, Yang T, Tian J, Wang YQ, Zhu L, Wang ZZ, Zhang Y. Treatment with 6‐gingerol regulates dendritic cell activity and ameliorates the severity of experimental autoimmune encephalomyelitis. Molecular nutrition and food research 2019; 63(18): 1801356. [DOI:10.1002/mnfr.201801356]
31. Jafarzadeh A, Arabi Z, Ahangar-Parvin R, Mohammadi-Kordkhayli , Nemati M. Ginger extract modulates the expression of chemokines CCL20 and CCL22 and their receptors (CCR6 and CCR4) in the central nervous system of mice with experimental autoimmune encephalomyelitis. Drug research 2017; 67(11): 632-639. [DOI:10.1055/s-0043-113455]
32. Waggas AM. Neuroprotective evaluation of extract of ginger (Zingiber officinale) root in monosodium glutamateinduced toxicity in different brain areas malealbino rats. Pakistan journal of biological sciences 2009; 12(3): 201-212. [DOI:10.3923/pjbs.2009.201.212]
33. Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah AM. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. International journal of preventive medicine 2018; 9: 85. [DOI:10.4103/ijpvm.IJPVM_75_18]
34. Liu Z, Hu X, Cai J, Liu B, Peng X. and Wegner M. Induction of oligodendrocyte differentiation by Olig2 and Sox10: Evidence for reciprocal interactions and dosage-dependent mechanisms. Developmental Biology 2007; 302(2): 683-693. [DOI:10.1016/j.ydbio.2006.10.007]
35. Stamenkovic V, Milenkovic I, Galjak N, Todorovic V, Andjus P (2017) Enriched environment alters the behavioral profile of Tenascin-C deficient mice. Behavioural brain research 2017; 331: 241-253. [DOI:10.1016/j.bbr.2017.05.047]
36. Shivane AG, Chakrabarty A. Multiple sclerosis and demyelination. Current diagnosis pathology 2007; 13(3): 193-202. [DOI:10.1016/j.cdip.2007.04.003]
37. Sherafat MA, Javan M, Mozafari S, Mirnajafi-Zadeh J, Motamedi F. Castration attenuates myelin repair following lysolecithin induced demyelination in rat optic chiasm: An evaluation using visual evoked potential, marker genes expression and myelin staining. Neurochemical research 2012; 36(10): 1887-1895. [DOI:10.1007/s11064-011-0510-6]
38. Bruck W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. Journal of neurology 2005; 252: 3-9. [DOI:10.1007/s00415-005-5002-7]
39. Franklin RJM, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nature reviews. Neuroscience 2008; 9(11): 839-855. [DOI:10.1038/nrn2480]
40. Czepiel M, Balasubramaniyan V, Schaafsma W, Stancic M, Mikkers H, Huisman C, Boddeke E, Copray S. Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia 2011; 59(9): 882-892. [DOI:10.1002/glia.21159]
41. Roberto F, Cuomo C, MartinoG. Animal models of multiple sclerosis. Methods in molecular biology 2009; 549: 73-157. [DOI:10.1007/978-1-60327-931-4_11]
42. Denic A, Johnson A J, Bieber A J, Warrington A E, Rodriguez M, Pirko I. The relevance of animal models in multiple sclerosis research. Pathophysiology 2011; 18: 9-21. [DOI:10.1016/j.pathophys.2010.04.004]
43. Torkildsen O, Brunborg LA, Myhr KM, Bo L. The cuprizone model for demyelination. Acta neurologica scandinavica 2008; 117 (Suppl. 188): 72-76. [DOI:10.1111/j.1600-0404.2008.01036.x]
44. Skripuletz T, Gudi V, Hackstette D, Stangel M. De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histology and histopathology 2011; 26: 1585-1597.
45. Nazm Bojnordi M, Movahedin M, Tiraihi T, Javan M, Ghasemi Hamidabadi H. Oligoprogenitor cells derived from spermatogonia stem cells improve remyelination in demyelination model. Molecular biotechnology 2014; 56(5): 93-387. [DOI:10.1007/s12033-013-9722-0]
46. Kasarello K, Cudnoch-Jędrzejewska A, Członkowski A, Mirowska-Guzel D. Mechanism of action of three newly registered drugs for multiple sclerosis treatment. Pharmacological reports 2017; 69(4): 702-708. [DOI:10.1016/j.pharep.2017.02.017]
47. de Jong HJ, Kingwell E, Shirani A, Tervaert JWC, Hupperts R, Zhao Y, Zhu F, Evans C, van der Kop ML, Traboulsee A. and Gustafson, P. Evaluating the safety of β-interferons in MS: A series of nested casecontrol studies. Neurology 2017; 88(4): 2310-2320. [DOI:10.1212/WNL.0000000000004037]
48. Mojaverrostami S, Nazm Bojnordi M, Ghasemi-Kasman M, Ebrahimzadeh MA, Ghasemi Hamidabadi H. A Review of Herbal Therapy in Multiple Sclerosis. Advanced pharmaceutical bulletin 2018; 8(4): 575-590. [DOI:10.15171/apb.2018.066]
49. Kim S, Lawrence C, Bianca WG, Sirin G, Dejan J, Ellen C, Robert Z, Murali R. Complementary and alternative medicine usage by multiple sclerosis patients: Results from a prospective clinical study. Journal of alternative and complementary medicine 2018; 24: 596-602. [DOI:10.1089/acm.2017.0268]
50. Dayapoglu N, Tan M. Use of complementary and alternative medicine among people with multiple sclerosis in eastern turkey. Neurology Asia 2016; 21(1): 63-71.
51. Kuo PC, Cherng CY, Jeng JF, Damu AG, Teng CM, Lee EJ, Wu TS. Isolation of a natural antioxidant, dehydrozin¬gerone from Zingiber officinale and synthesis of its ana¬logues for recognition of effective antioxidant and antity¬rosinase agents. Archives of pharmacal research 2005; 28(5): 518-528. [DOI:10.1007/BF02977752]
52. Nanjundaiah SM, Annaiah HN, Dharmesh SM. Gastro¬protective Effect of ginger rhizome (Zingiber officinale) extract: role of gallic acid and cinnamic acid in H+, K+-ATPase/H. pylori inhibition and anti-oxidative mechanism. Evidence-based complementary and alternative medicine 2011; 2011: 249487 [DOI:10.1093/ecam/nep060]
53. Jafarzadeh A, Mohammadi-Kordkhayli M, Ahangar-Parvin R, Azizi V, Khoramdel-Azad H, Shamsizadeh A, Khaksari M. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease. Journal of neuroimmunology 2014; 276(1-2): 8-80. [DOI:10.1016/j.jneuroim.2014.08.614]
54. Rittchen S, Boyd A, Burns A, Park J, Fahmy TM, Metcalfe S, Williams A. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF). Biomaterials 2015; 56: 78-85. [DOI:10.1016/j.biomaterials.2015.03.044]
55. El-Akabawy G, El-Kholy W. Neuroprotective effect of ginger in the brain ofstreptozotocin-induced diabetic rats. Annals of anatomy-Anatomischer anzeiger 2014; 196(2-3): 119-128. [DOI:10.1016/j.aanat.2014.01.003]
56. Mehdizadeh M, Dabaghian F, Nejhadi A, Fallah-huseini H, Choopani S, Shekarriz N, Molavi N, Basirat A, Kazorgah FM, Samzadeh-Kermani A, Asl SS. Zingiber officinale alters 3,4-methylenedioxymethamphetamine-induced neurotoxicity in rat brain. Cell journal 2012; 14(3): 177. [DOI:10.1016/j.jns.2013.07.1071]
57. Gaire BP, Kwon OW, Park SH, Chun KH, Kim SY, Shin DY, Choi JW. Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One 2015; 10(3): e0120203. [DOI:10.1371/journal.pone.0120203]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb