Volume 26, Issue 2 (3-2022)                   IBJ 2022, 26(2): 132-141 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Morovvat F, Samsam Shariat* S Z, Davoudi M, Norouzian D. Immobilization of Urease onto Modified Egg Shell Membrane through Cross Linking. IBJ 2022; 26 (2) :132-141
URL: http://ibj.pasteur.ac.ir/article-1-2869-en.html
Abstract:  
Background: Immobilization is an approach in industry to improve stability and reusability of urease. The efficiency of this technique depends on the type of membrane and the method of stabilization.
Methods: The PEI-modified egg shell membrane was used to immobilize urease by absorption and glutaraldehyde cross-linking methods. The membranes were characterized by Fourier-transform infrared spectroscopy (FTIR) and AFM, and Nessler method was applied to measure the kinetic of the immobilized enzymes. Finally, the storage stability (6 °C for 21 days) and reusability (until enzyme activity reached to zero) of the immobilized enzymes were investigated.  
Results: Based on FTIR, three new peaks were observed in both the absorption- (at 1389.7, 1230.8, and 1074.2 cm-1) and the cross-linking (at 1615-1690, 1392.7, 1450 cm-1) immobilized enzymes. The surface roughness of the native membrane was altered after PEI treatment and enzyme immobilization. The optimal pH of cross-linking immobilized enzymes was shifted to a more neutral pH, while it was alkaline in adsorption-immobilized and free enzymes. The reaction time decreased in all immobilized enzymes (100 min for free enzyme vs. 60 and 30 min after immobilizing by adsorption and cross-linking methods, respectively). The optimal temperature for all enzymes was 70 °C and they had a higher Km and a lower Vmax than free enzyme. The stability and reusability of urease were improved by both methods.
Conclusion: Our findings propose these approaches as promising ways to enhance the urease efficiency for its applications in industries and medicines.

References
1. Krajewska B. Ureases I. Functional, catalytic and kinetic properties. Journal of molecular catalysis B: Enzymatic 2009; 59(1-3): 9-21. [DOI:10.1016/j.molcatb.2009.01.003]
2. Miyagawa K, Sumida M, Nakao M, Harada M, Yamamoto H, Kusumi T, Yoshizawa K, Amachi T, Nakayama T. Purification, characterization, and application of an acid urease from Arthrobacter mobilis. Journal of biotechnology 1999; 68(2-3): 227-236. [DOI:10.1016/S0168-1656(98)00210-7]
3. Zhylyak G, Dzyadevich S, Korpan Y, Soldatkin A, El'Skaya A. Application of urease conductometric biosensor for heavy-metal ion determination. Sensors and actuators B 1995; 24(1-3): 145-148. [DOI:10.1016/0925-4005(95)85031-7]
4. Sahney R, Anand S, Puri B, Srivastava A. A comparative study of immobilization techniques for urease on glass-pH-electrode and its application in urea detection in blood serum. Analytica chimica acta 2006; 578(2): 156-161.. [DOI:10.1016/j.aca.2006.06.063]
5. EL-Hefnawy ME, Sakran M, Ismail AI, Aboelfetoh EF. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds. BMC biochemistry 2014; 15(1): 15. [DOI:10.1186/1471-2091-15-15]
6. Banerjee S, Aggarwal A. Enzymology, immobilization and applications of urease enzyme. International journal of biological sciences 2013; 2: 51-56.
7. Spahn C, Minteer SD. Enzyme immobilization in biotechnology. Recent patents on engineering 2008; 2(3): 195-200. [DOI:10.2174/187221208786306333]
8. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and biotechnological equipment 2015; 29(2): 205-220. [DOI:10.1080/13102818.2015.1008192]
9. Sheldon RA. Enzyme immobilization: the quest for optimum performance. Advanced synthesis and catalysis 2007; 349(8‐9): 1289-1307. [DOI:10.1002/adsc.200700082]
10. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004; 37(5): 790-802. [DOI:10.2144/04375RV01]
11. Wilson L, Betancor L, Fernández-Lorente G, Fuentes M, Hidalgo A, Guisán JM, Pessela BC, Fernández-Lafuente R. Cross-linked aggregates of multimeric enzymes: a simple and efficient methodology to stabilize their quaternary structure. Biomacromolecules 2004; 5(3): 814-817. [DOI:10.1021/bm034528i]
12. Jesionowski T, Zdarta J, Krajewska B. Enzyme immobilization by adsorption: a review. Adsorption 2014; 20(5): 801-821 . [DOI:10.1007/s10450-014-9623-y]
13. Hernandez K, Fernandez-Lafuente R. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and microbial technology 2011; 48(2): 107-122. [DOI:10.1016/j.enzmictec.2010.10.003]
14. Pundir C, Bhambi M, Chauhan NS. Chemical activation of egg shell membrane for covalent immobilization of enzymes and its evaluation as inert support in urinary oxalate determination. Talanta 2009; 77(5): 1688-1693. [DOI:10.1016/j.talanta.2008.10.004]
15. Krajewska B. Urease immobilized on chitosan membrane. Inactivation by heavy metal ions. Journal of chemical Technology and biotechnology 1991; 52(2): 157-162. [DOI:10.1002/jctb.280520203]
16. Marzadori C, Miletti S, Gessa C, Ciurli S. Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils. Soil biology and biochemistry 1998; 30(12): 1485-1490. [DOI:10.1016/S0038-0717(98)00051-0]
17. Sahoo B, Sahu SK, Pramanik P. A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. Journal of molecular catalysis B 2011; 69(3-4): 95-102. [DOI:10.1016/j.molcatb.2011.01.001]
18. Virgen-Ortíz JJ, Dos Santos JC, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of materials chemistry B 2017; 5(36): 7461-7490. [DOI:10.1039/C7TB01639E]
19. Rao MS, Chellapandian M, Krishnan M. Immobilization of urease on gelatin poly (HEMA) copolymer preparation and characterization. Bioprocess engineering 1995; 13(4): 211-214. [DOI:10.1007/s004490050158]
20. D'Souza S, Kumar J, Jha SK, Kubal B. Immobilization of the urease on eggshell membrane and its application in biosensor. Materials science and engineering 2013; 33(2): 850-854. [DOI:10.1016/j.msec.2012.11.010]
21. Johnson KA, Goody RS. The original Michaelis constant: translation of the 1913 Michaelis Menten paper. Biochemistry 2011; 50(39): 8264-8269 . [DOI:10.1021/bi201284u]
22. Bickerstaff GF. Immobilization of enzymes and cells. Immobilization of enzymes and cells 1997: 1-11. [DOI:10.1385/0896033864]
23. Katchalski-Katzir EJTib. Immobilized enzymes learning from past successes and failures. Trends in biotecnology 1993; 11(11): 471-478. [DOI:10.1016/0167-7799(93)90080-S]
24. Steen Redeker E, Ta DT, Cortens D, Billen B, Guedens W, Adriaensens PJBc. Protein engineering for directed immobilization 2013; 24(11): 1761-1777. [DOI:10.1021/bc4002823]
25. Singh R, Tiwari M, Singh R, Lee J-KJIjoms. From protein engineering to immobilization. International journal molecular science 2013; 14(1): 1232-1277. [DOI:10.3390/ijms14011232]
26. Woodward, J. Immobilised cells and enzymes: a practical approach. England: Oxford; 1985.
27. Guisan JM. Immobilization of enzymes as the 21st century begins. Immobilization of enzymes and cells 2006: 1-13. [DOI:10.1007/978-1-59745-053-9_1]
28. Kumar N, Bharadwaj LM, Sharma AL, Singh DP. Studies of glucose oxidase immobilized carbon nanotube-polyaniline composites. Reterieved from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.9824&rep=rep1&type=pdf.
29. Sheldon, R. A. Cross-linked enzyme aggregates (CLEA® s): stable and recyclable biocatalysts. Biochemical society transaction 2007; 35(6): 1583-1587. [DOI:10.1042/BST0351583]
30. Górecka E, Jastrzębska MJBFS. Immobilization techniques and biopolymer carriers-a review. Biotechnology and food science 2011; 75(1-2): 27-34.
31. Du L, Huang M, Xu Q, Zhang JJAJoC. Direct Electrochemistry and electrocatalysis of hemoglobin immobilized on eggshell membrane modified glassy carbon electrode. Asian journal of chemistry 2015; 27(1). [DOI:10.14233/ajchem.2015.16820]
32. Aebi H. Catalase in vitro. Methods in enzymology 1984; 105: 121-126. [DOI:10.1016/S0076-6879(84)05016-3]
33. Daniel RM, Danson MJ, Eisenthal R, Lee CK, Peterson MEJE. The effect of temperature on enzyme activity. Extremophiles 2008; 12(1): 51-59. [DOI:10.1007/s00792-007-0089-7]
34. Quiquampoix H, Staunton S, Baron M-H, Ratcliffe RJC, Physicochemical SA, Aspects E. Interpretation of the pH dependence of protein adsorption on clay mineral surfaces and its relevance to the understanding of extracellular enzyme activity in soil. Colloids and surfaces A 1993; 75: 85-93. [DOI:10.1016/0927-7757(93)80419-F]
35. Nilsson K, Mosbach KJB, communications br. Immobilization of enzymes and affinity ligands to various hydroxyl group carrying supports using highly reactive sulfonyl chlorides. Biochemical and biophysical research communications 1981; 102(1): 449-457. [DOI:10.1016/0006-291X(81)91541-2]
36. Monier M, El-Sokkary AJIjobm. Modification and characterization of cellulosic cotton fibers for efficient immobilization of urease. International journal of biological macromolecules 2012; 51(1-2): 18-24. [DOI:10.1016/j.ijbiomac.2012.04.019]
37. Mulagalapalli S, Kumar S, Kalathur RCR, Kayastha AMJAb, biotechnology. Immobilization of urease from pigeonpea (Cajanus cajan) on agar tablets and its application in urea assay. Applied biochemistry and biotechnology 2007; 142(3): 291-297. [DOI:10.1007/s12010-007-0022-7]
38. Kayastha AM, Srivastava PKJAb, biotechnology. Pigeonpea (Cajanus cajan L.) urease immobilized on glutaraldehyde-activated chitosan beads and its analytical applications. Applied biochemistry and biotechnology 2001; 96(1-3): 41-53. [DOI:10.1385/ABAB:96:1-3:041]
39. Tembe S, Kubal B, Karve M, D'Souza SJAca. Glutaraldehyde activated eggshell membrane for immobilization of tyrosinase from Amorphophallus companulatus. Analytica chimica acta 2008; 612(2): 212-21. [DOI:10.1016/j.aca.2008.02.031]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb