Volume 28, Issue 1 (1-2024)                   IBJ 2024, 28(1): 8-14 | Back to browse issues page

PMID: 38444380
PMCID: PMC10994635


XML Print


Abstract:  
Celiac disease (CD) is a complex disorder influenced by genetic and environmental factors. When people with a genetic predisposition to CD consume gluten, an inflammatory response is triggered in the small intestine, and this reaction can be alleviated by the elimination of gluten from the diet. The clinical manifestations of CD vary greatly from person to person and begin at a young age or in adulthood. Influence of genetic factors on CD development is evident in carriers of the DQ2 and/or DQ8 allele. HLA genotypes are associated with gut colonization by bacteria, particularly in individuals suffering from CD. In addition, beneficial gut microbes are crucial for the production of DPP-4, which plays a key role in immune function, as well as metabolic and intestinal health. Therefore, probiotics have been recommended as a complementary food supplement in CD.
Type of Study: Mini-Review | Subject: Related Fields

References
1. Jedwab CF, Roston BCdMB, Toge ABFdS, Echeverria IF, Tavares GOG, Alvares MA, et al. O papel dos probióticos na resposta imunológica e na microbiota fecal de crianças com doença celíaca: uma revisão sistemática. Rev Paul Pediatr. 2022; 40:e2020447.
2. Holtmeier W, Caspary WF. Celiac disease. Orphanet J Rare Dis. 2006; 1:3. [DOI:10.1186/1750-1172-1-3]
3. Tonutti E, Bizzaro N. Diagnosis and classification of celiac disease and gluten sensitivity. Autoimmun Rev. 2014; 13(4-5):472-6. [DOI:10.1016/j.autrev.2014.01.043]
4. Björck S, Lynch K, Brundin C, Agardh D. Repeated screening can be restricted to at-genetic-risk birth cohorts. J Pediatr Gastroenterol Nutr. 2016; 62(2):271-5. [DOI:10.1097/MPG.0000000000000946]
5. Green PH, Lebwohl B, Greywoode R. Celiac disease. J Allergy Clin Immunol. 2015; 135(5):1099-106. [DOI:10.1016/j.jaci.2015.01.044]
6. Poddighe D, Rebuffi C, De Silvestri A, Capittini C. Carrier frequency of HLA-DQB1* 02 allele in patients affected with celiac disease: A systematic review assessing the potential rationale of a targeted allelic genotyping as a first-line screening. World J Gastroenterol. 2020; 26(12):1365-81. [DOI:10.3748/wjg.v26.i12.1365]
7. Sarno M, Discepolo V, Troncone R, Auricchio R. Risk factors for celiac disease. Ital J Pediatr. 2015; 41:57. [DOI:10.1186/s13052-015-0166-y]
8. Kelly CP, Bai JC, Liu E, Leffler DA. Advances in diagnosis and management of celiac disease. Gastroenterology. 2015; 148(6):1175-86. [DOI:10.1053/j.gastro.2015.01.044]
9. Itzlinger A, Branchi F, Elli L, Schumann M. Gluten-free diet in celiac disease-forever and for all? Nutrients. 2018; 10(11):1796. [DOI:10.3390/nu10111796]
10. Rubio Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA, American College of Gastroentology. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013; 108(5):656-76. [DOI:10.1038/ajg.2013.79]
11. Sahin Y. Celiac disease in children: A review of the literature. World J Clin Pediatr. 2021; 10(4):53-71. [DOI:10.5409/wjcp.v10.i4.53]
12. de Lourdes Moreno M, Cebolla Á, Muñoz-Suano A, Carrillo-Carrion C, Comino I, Pizarro Á, et al. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut. 2017; 66(2):250-7. [DOI:10.1136/gutjnl-2015-310148]
13. Cichewicz AB, Mearns ES, Taylor A, Boulanger T, Gerber M, Leffler DA, et al. Diagnosis and treatment patterns in celiac disease. Dig Dis Sci. 2019; 64:2095-106. [DOI:10.1007/s10620-019-05528-3]
14. Cianferoni A. Wheat allergy: diagnosis and management. J Asthma Allergy. 2016; 9:13-25. [DOI:10.2147/JAA.S81550]
15. Ilus T, Kaukinen K, Virta L, Huhtala H, Mäki M, Kurppa K, et al. Refractory coeliac disease in a country with a high prevalence of clinically‐diagnosed coeliac disease. Aliment Pharmacol Ther. 2014; 39(4):418-25. [DOI:10.1111/apt.12606]
16. Moreno Amador MdL, Sánchez Muñoz D, Sanders D, Rodríguez Herrera A, Sousa Martín C. Verifying diagnosis of refractory celiac disease with urine gluten immunogenic peptides as biomarker. Front Med. 2020; 7: 601854. [DOI:10.3389/fmed.2020.601854]
17. Picozzi C, Mariotti M, Cappa C, Tedesco B, Vigentini I, Foschino R, et al. Development of a Type I gluten‐free sourdough. Lett Appl Microbiol. 2016; 62(2):119-25. [DOI:10.1111/lam.12525]
18. Singhvi N, Gupta V, Gaur M, Sharma V, Puri A, Singh Y, et al. Interplay of human gut microbiome in health and wellness. Indian J Microbiol. 2020; 60(1):26-36. [DOI:10.1007/s12088-019-00825-x]
19. Francavilla R, Piccolo M, Francavilla A, Polimeno L, Semeraro F, Cristofori F, et al. Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent IBS-type symptoms. J Clin Gastroenterol. 2019; 53(3):e117. [DOI:10.1097/MCG.0000000000001023]
20. Håkansson Å, Andrén Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: a randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2019; 11(8):1925. [DOI:10.3390/nu11081925]
21. Johnson TC, Diamond B, Memeo L, Negulescu H, Hovhanissyan Z, Verkarre V, et al. Relationship of HLA-DQ8 and severity of celiac disease: comparison of New York and Parisian cohorts. Clin Gastroenterol Hepatol. 2004; 2(10):888-94. [DOI:10.1016/S1542-3565(04)00390-8]
22. Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol. 2013; 13(4):294-302. [DOI:10.1038/nri3407]
23. Farsimadan M, Heravi FS, Emamvirdizadeh A, Moradi S, Iranpour H, Tabasi E, et al. Evaluation of helicobacter pylori genotypes in obese patients with gastric ulcer, duodenal ulcer, and gastric cancer: an observational study. Dig Dis. 2022; 40(3):355-61. [DOI:10.1159/000517262]
24. Martínez Ojinaga E, Fernández-Prieto M, Molina M, Polanco I, Urcelay E, Núñez C. Influence of HLA on clinical and analytical features of pediatric celiac disease. BMC Gastroenterol. 2019; 19:91. [DOI:10.1186/s12876-019-1014-0]
25. Heap GA, van Heel DA. Genetics and pathogenesis of coeliac disease. Semin Immunol. 2009; 21(6):346-54. [DOI:10.1016/j.smim.2009.04.001]
26. Zamani M, Modares Sadegi M, Shirvani F, Zamani H, Emami M. The involvement of the HLA‐DQB 1 alleles in the risk and the severity of Iranian coeliac disease patients. Int J Immunogenet. 2014; 41(4):312-7. [DOI:10.1111/iji.12128]
27. Bajor J, Szakács Z, Farkas N, Hegyi P, Illés A, Solymár M, et al. Classical celiac disease is more frequent with a double dose of HLA-DQB1* 02: A systematic review with meta-analysis. Plos One. 2019; 14(2):e0212329. [DOI:10.1371/journal.pone.0212329]
28. D'Avino P, Serena G, Kenyon V, Fasano A. An updated overview on celiac disease: from immuno-pathogenesis and immuno-genetics to therapeutic implications. Expert Rev Clin Immunol. 2021; 17(3):269-84. [DOI:10.1080/1744666X.2021.1880320]
29. Sollid LM, Tye Din JA, Qiao SW, Anderson RP, Gianfrani C, Koning F. Update 2020: nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics. 2020; 72(1-2):85-8. [DOI:10.1007/s00251-019-01141-w]
30. Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med. 2000; 6(3):337-42. [DOI:10.1038/73200]
31. Huan J, Meza-Romero R, Mooney JL, Vandenbark AA, Offner H, Burrows GG. Single-chain recombinant HLA-DQ2. 5/peptide molecules block α2-gliadin-specific pathogenic CD4+ T-cell proliferation and attenuate production of inflammatory cytokines: a potential therapy for celiac disease. Mucosal Immunol. 2011; 4(1):112-20. [DOI:10.1038/mi.2010.44]
32. Espino L, Núñez C. The HLA complex and coeliac disease. Int Rev Cell Mol Biol. 2021; 358:47-83. [DOI:10.1016/bs.ircmb.2020.09.009]
33. Gholam Mostafaei FS, Rostami-Nejad M, Emadi A, Yadegar A, Asadzadeh Aghdaei H, Zali MR. Changes in the composition and function of the gut microbiota in celiac disease. Koomesh. 2021; 23(3):301-16. [DOI:10.52547/koomesh.23.3.301]
34. Olivares M, Neef A, Castillejo G, De Palma G, Varea V, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015; 64(3):406-17. [DOI:10.1136/gutjnl-2014-306931]
35. Sjöberg V, Sandström O, Hedberg M, Hammarström S, Hernell O, Hammarström ML. Intestinal T-cell responses in celiac disease-impact of celiac disease associated bacteria. Plos One. 2013; 8(1):e53414. [DOI:10.1371/journal.pone.0053414]
36. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009; 139(3):485-98. [DOI:10.1016/j.cell.2009.09.033]
37. Myléus A, Hernell O, Gothefors L, Hammarström ML, Persson LÅ, Stenlund H, et al. Early infections are associated with increased risk for celiac disease: an incident case-referent study. BMC Pediatr. 2012; 12:194. [DOI:10.1186/1471-2431-12-194]
38. Olivares M, Laparra JM, Sanz Y. Host genotype, intestinal microbiota and inflammatory disorders. Br J Nutr. 2013; 109(S2):S76-S80. [DOI:10.1017/S0007114512005521]
39. Ivarsson A, Persson L, Nyström L, Ascher H, Cavell B, Danielsson L, et al. Epidemic of coeliac disease in Swedish children. Acta Paediatr. 2000; 89(2):165-71. [DOI:10.1111/j.1651-2227.2000.tb01210.x]
40. Olsson C, Hernell O, Hörnell A, Lönnberg Gr, Ivarsson A. Difference in celiac disease risk between Swedish birth cohorts suggests an opportunity for primary prevention. Pediatrics. 2008; 122(3):528-34. [DOI:10.1542/peds.2007-2989]
41. Kalia VC, Gong C, Shanmugam R, Lin H, Zhang L, Lee JK. The emerging biotherapeutic agent: Akkermansia. Indian J Microbiol. 2022; 62(1):1-10. [DOI:10.1007/s12088-021-00993-9]
42. Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017; 279(1):90-105. [DOI:10.1111/imr.12563]
43. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010; 192(19):5002-17. [DOI:10.1128/JB.00542-10]
44. Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2007; 57(Pt 5):941-6. [DOI:10.1099/ijs.0.64778-0]
45. Cukrowska B, Sowińska A, Bierła JB, Czarnowska E, Rybak A, Grzybowska Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota-Key players in the pathogenesis of celiac disease. World J Gastroenterol. 2017; 23(42):7505-18. [DOI:10.3748/wjg.v23.i42.7505]
46. De Palma G, Capilla A, Nadal I, Nova E, Pozo T, Varea V, et al. Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol. 2010; 12(1):1-10.
47. Ivarsson A, Hernell O, Stenlund H, Persson LÅ. Breast-feeding protects against celiac disease. A J Clin Nutr. 2002; 75(5):914-21. [DOI:10.1093/ajcn/75.5.914]
48. De Palma G, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. Plos One. 2012; 7(2):e30791. [DOI:10.1371/journal.pone.0030791]
49. Demuth H-U, McIntosh CH, Pederson RA. Type 2 diabetes-therapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta. 2005; 1751(1):33-44. [DOI:10.1016/j.bbapap.2005.05.010]
50. Lambeir AM, Durinx C, Scharpé S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003; 40(3):209-94. [DOI:10.1080/713609354]
51. Olivares M, Schüppel V, Hassan AM, Beaumont M, Neyrinck AM, Bindels LB, et al. The potential role of the dipeptidyl peptidase-4-like activity from the gut microbiota on the host health. Front Microbiol. 2018; 9:1900. [DOI:10.3389/fmicb.2018.01900]
52. Fteita D, Könönen E, Gürsoy M, Söderling E, Gürsoy UK. Does estradiol have an impact on the dipeptidyl peptidase IV enzyme activity of the Prevotella intermedia group bacteria? Anaerobe. 2015; 36:14-8. [DOI:10.1016/j.anaerobe.2015.09.002]
53. Üstün Aytekin Ö, Arısoy S, Aytekin AÖ, Yıldız E. Statistical optimization of cell disruption techniques for releasing intracellular X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis spp. lactis. Ultrason Sonochem. 2016; 29:163-71. [DOI:10.1016/j.ultsonch.2015.09.010]
54. Hildebrandt M, Rose M, Rüter J, Salama A, Mönnikes H, Klapp B. Dipeptidyl peptidase IV (DP IV, CD26) in patients with inflammatory bowel disease. Scand J Gastroenterol. 2001; 36(10):1067-72. [DOI:10.1080/003655201750422675]
55. Sorbara MT, Pamer EG. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 2019; 12(3):840. [DOI:10.1038/s41385-019-0151-7]
56. Lindfors K, Ciacci C, Kurppa K, Lundin KE, Makharia GK, Mearin ML, et al. Coeliac disease. Nat Rev Dis Primers. 2019; 5:3. [DOI:10.1038/s41572-018-0054-z]
57. Rinninella E, Raoul P, Cintoni M, Franceschi F, Abele G, Miggiano D, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019; 7:14. [DOI:10.3390/microorganisms7010014]
58. Fehlner-Peach H, Magnabosco C, Raghavan V, Scher JU, Tett A, Cox LM, et al. Distinct polysaccharide growth profiles of human intestinal Prevotella copri isolates. Cell Host Microbe. 2019; 26(5):680-90.e5. [DOI:10.1016/j.chom.2019.10.013]
59. Kovatcheva Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015; 22(6):971-82. [DOI:10.1016/j.cmet.2015.10.001]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.