Volume 28, Issue 1 (1-2024)                   IBJ 2024, 28(1): 46-52 | Back to browse issues page

PMID: 38445441
Ethics code: IR.SUMS.REC.1401.127


XML Print


Abstract:  
Background: The surface properties of dental and orthopedic implants are directly related to their osseointegration rate. Coating and/or modifying the implant surface might reduce the time of healing. In this study, we aimed to examine the effects of a hybrid surface consisting of a brushite surface coating and cross-linked water-soluble eggshell membrane protein on the osseointegration of titanium (Ti) screws under in vivo conditions.
Methods:  Twenty Ti alloy screws were implanted monocortically in anteromedial regions of New Zealand rabbit tibiae. Ten screws were untreated and used as controls. The remaining 10 screws were coated with calcium phosphate and following cross-linked with ostrich eggshell membrane protein. All rabbits were sacrificed six weeks after the surgery. Peri-screw tissues were evaluated by micro-computed tomography (µ-CT), histological and histomorphometrical methods. 
Results: The μ-CT assessments indicated that the experimental group had significantly higher mean bone surface area (BSA) and trabeculae number (TbN) than those of the control group (p ˂ 0.05). Bone surface area (BV), trabecular separation (TbSp), trabecular thickness (TbTh), and bone mineral density (BMD) scores of the control and experimental groups were quite similar (p > 0.05). The vascularization score of the experimental group was significantly higher than the control group (4.29 vs. 0.92%). No sign of the graft-versus-host reaction was observed.
Conclusion:  Our findings reveal that coating Ti alloy implants with calcium phosphate cross-linked with ostrich eggshell membrane protein increases the osseointegration of Ti alloy screws by increasing the bone surface area, number of trabeculae and vascularization in the implant site.
 
Type of Study: Full Length/Original Article | Subject: Cancer Biology

References
1. Herzig V. Animal Venoms-Curse or Cure?. Biomedicines. 2021; 9(4):413. [DOI:10.3390/biomedicines9040413]
2. Gajski G, Garaj Vrhovac V. Melittin: a lytic peptide with anticancer properties. Environ Toxicol Phar. 2013; 36(2):697-705. [DOI:10.1016/j.etap.2013.06.009]
3. Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009; 27(16):2712-25. [DOI:10.1200/JCO.2008.20.6235]
4. Zhang S, Liu Y, Ye Y, Wang XR, Lin LT, Xiao LY, et al. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon. 2018; 148:64-73. [DOI:10.1016/j.toxicon.2018.04.012]
5. Mansour GH, El-Magd MA, Mahfouz DH, Abdelhamid IA, Mohamed MF, Ibrahim NS, et al. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells. Bioorg Chem. 2021; 116:105329. [DOI:10.1016/j.bioorg.2021.105329]
6. Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun L, et al. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol. 2021; 193:114769. [DOI:10.1016/j.bcp.2021.114769]
7. Lebel AA, Kisembo MV, Soucy M-FN, Hébert MP, Boudreau LH. Molecular characterization of the anticancer properties associated with bee venom and its components in glioblastoma multiforme. Chem Biol Interact. 2021; 347:109622. [DOI:10.1016/j.cbi.2021.109622]
8. Ceremuga M, Stela M, Janik E, Gorniak L, Synowiec E, Sliwinski T, et al. Melittin-a natural peptide from bee venom which induces apoptosis in human leukaemia cells. Biomolecules. 2020; 10(2):247. [DOI:10.3390/biom10020247]
9. Yu R, Wang M, Wang M, Han L. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway. Braz J Med Biol Res. 2020; 54(2):e9017. [DOI:10.1590/1414-431x20209017]
10. Khalikov RR, Gromenko DD, Galimova SS, Danilko KV, Gromenko ID, Galimov SN, et al. Impact of Honeybee Venom Melittin on Cell Viability of Different Prostate Cancer Lineages. Creat Surg Oncol. 2022; 12(2):118-22. [DOI:10.24060/2076-3093-2022-12-2-118-122]
11. Duffy C, Sorolla A, Wang E, Golden E, Woodward E, Davern K, et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis Oncol. 2020; 4:24. [DOI:10.1038/s41698-020-00129-0]
12. Luo Y, Xu C-m, Luo B, Liang G, Zhang Q. Melittin treatment prevents colorectal cancer from progressing in mice through ER stress-mediated apoptosis. J Pharm Pharmacol. 2023; 75(5):645-54. [DOI:10.1093/jpp/rgad008]
13. Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017; 402:16-31. [DOI:10.1016/j.canlet.2017.05.010]
14. Alonezi S, Tusiimire J, Wallace J, Dufton MJ, Parkinson JA, Young LC, et al. Metabolomic profiling of the synergistic effects of melittin in combination with cisplatin on ovarian cancer cells. Metabolites. 2017; 7(2):14. [DOI:10.3390/metabo7020014]
15. Kreinest T, Volkmer I, Staege MS. Melittin increases cisplatin sensitivity and kills KM-H2 and L-428 hodgkin lymphoma cells. Int J Mol Sci. 2020; 22(1):343. [DOI:10.3390/ijms22010343]
16. Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, et al. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy. 2017; 13(5):781-819. [DOI:10.1080/15548627.2017.1290751]
17. Read A, Schröder M. The unfolded protein response: an overview. Biology. 2021; 10(5):384. [DOI:10.3390/biology10050384]
18. Chong WC, Shastri MD, Eri R. Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology. Int J Mol Sci. 2017; 18(4):771. [DOI:10.3390/ijms18040771]
19. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Bio. 2020; 21(8):421-38. [DOI:10.1038/s41580-020-0250-z]
20. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020; 19(1):12. [DOI:10.1186/s12943-020-1138-4]
21. Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023; 24(6):382-400. [DOI:10.1038/s41576-022-00562-w]
22. Russell RC, Guan KL. The multifaceted role of autophagy in cancer. EMBO J. 2022; 41(13):e110031. [DOI:10.15252/embj.2021110031]
23. Siwecka N, Rozpędek W, Pytel D, Wawrzynkiewicz A, Dziki A, Dziki Ł, et al. Dual role of endoplasmic reticulum stress-mediated unfolded protein response signaling pathway in carcinogenesis. Int J Mol Sci. 2019; 20(18):4354. [DOI:10.3390/ijms20184354]
24. Fan Q, Hu Y, Pang H, Sun J, Wang Z, Li J. Melittin protein inhibits the proliferation of MG63 cells by activating inositol-requiring protein-1α and X-box binding protein1-mediated apoptosis. Mol Med Rep. 2014; 9(4):1365-70. [DOI:10.3892/mmr.2014.1936]
25. Bazi A, Gholamin M, Sisakht M, Keramati MR. Bee venom induces unfolded protein response in A172 glioblastoma cell line. Biotech Health Sci. 2015; 2(2): e27547. [DOI:10.17795/bhs-27547]
26. Yu JE, Kim Y, Hong DE, Lee DW, Chang JY, Yoo SS, et al. Bee venom triggers autophagy-induced apoptosis in human lung cancer cells via the mTOR signaling pathway. J Oncol. 2022; 2022:8916464. [DOI:10.1155/2022/8916464]
27. Lv C, Zhang Z, Zhao T, Han MF, Jia DP, Su LZ, et al. The anti-tumour effect of Mel and its role in autophagy in human hepatocellular carcinoma cells. Am J Transl Res. 2019; 11(2):931-41.
28. Wang D, He J, Dong J, Wu S, Liu S, Zhu H, et al. UM-6 induces autophagy and apoptosis via the Hippo-YAP signaling pathway in cervical cancer. Cancer Lett. 2021; 519:2-19. [DOI:10.1016/j.canlet.2021.05.020]
29. Zheng J, Lee HL, Ham YW, Song HS, Song MJ, Hong JT. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B. Oncotarget. 2015; 6(42):44437-51. [DOI:10.18632/oncotarget.6295]
30. Erfani M, Hosseini SV, Mokhtari M, Zamani M, Tahmasebi K, Alizadeh Naini M, et al. Altered ARID1A expression in colorectal cancer. BMC Cancer. 2020; 20:350. [DOI:10.1186/s12885-020-6706-x]
31. Siri M, Behrouj H, Dastghaib S, Zamani M, Likus W, Rezaie S, et al. Casein Kinase-1-alpha inhibitor (D4476) sensitizes microsatellite instable colorectal cancer cells to 5-fluorouracil via authophagy flux inhibition. Arch Immunol Ther Exp. 2021; 69(1):26. [DOI:10.1007/s00005-021-00629-2]
32. Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019; 9(4):217-22. [DOI:10.2991/jegh.k.191008.001]
33. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021; 149(4):778-89. [DOI:10.1002/ijc.33588]
34. Moon DO, Park SY, Choi YH, Kim ND, Lee C, Kim GY. Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phospho-rylation in human leukemic U937 cells. Toxicon. 2008; 51(1):112-20. [DOI:10.1016/j.toxicon.2007.08.015]
35. Jeong YJ, Choi Y, Shin JM, Cho HJ, Kang JH, Park KK, et al. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem Toxicol. 2014; 68:218-25. [DOI:10.1016/j.fct.2014.03.022]
36. Zhang H, Zhao B, Huang C, Meng XM, Bian EB, Li J. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells. PloS One. 2014; 9(5):e95520. [DOI:10.1371/journal.pone.0095520]
37. Tipgomut C, Wongprommoon A, Takeo E, Ittiudomrak T, Puthong S, Chanchao C. Melittin induced G1 cell cycle arrest and apoptosis in chago-K1 human bronchogenic carcinoma cells and inhibited the differentiation of THP-1 cells into tumour-associated macrophages. Asian PacJ Cancer Prev. 2018; 19(12):3427-34. [DOI:10.31557/APJCP.2018.19.12.3427]
38. Chipurupalli S, Samavedam U, Robinson N. Crosstalk between ER stress, autophagy and inflammation. Front Med. 2021; 8:758311. [DOI:10.3389/fmed.2021.758311]
39. Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, et al. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence. 2019; 10(1):376-413. [DOI:10.1080/21505594.2019.1605803]
40. Song S, Tan J, Miao Y, Li M, Zhang Q. Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 2017; 232(11):2977-2984. [DOI:10.1002/jcp.25785]
41. Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M, Safaralizadeh R. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol ResPract. 2023; 248:154706. [DOI:10.1016/j.prp.2023.154706]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.