Volume 27, Issue 6 (11-2023)                   IBJ 2023, 27(6): 326-339 | Back to browse issues page

PMID: 38193285

XML Print

The present systematic review of animal studies on long-term fructose intake in rodents revealed a significant decrease in the activities of antioxidant enzymes due to a fructose-rich diet. The reduced activity of these enzymes led to an increase in oxidative stress, which can cause liver damage in rodents. Of eight studies analyzed, 5 (62.5%) and 1 (12.5%) used male and female rats, respectively, while 2 studies (25%) used female mice. Moreover, half of the studies used high-fructose corn syrup, but the other half employed fructose in the diet. Hence, it is essential to monitor dietary habits to ensure public health and nutrition research outcomes.

1. Zhang L, Perdomo G, Kim DH, Qu S, Ringquist S, Trucco M, Dong HH. Proteomic analysis of fructose-induced fatty liver in hamsters. Metabolism 2008; 57(8): 1115-1124. [DOI:10.1016/j.metabol.2008.03.017]
2. Harada N, Nomura M, Yoda Y, Matsumura S, Inui H, Yamaji R. Food texture affects glucose tolerance by altering pancreatic β-cell function in mice consuming high-fructose corn syrup. PloS one 2020; 15(5): e0233797. [DOI:10.1371/journal.pone.0233797]
3. Dongiovanni P, M Anstee Q, Valenti L. Genetic predisposition in NAFLD and NASH: impact on the severity of liver disease and response to treatment. Current pharmaceutical design 2013; 19(29): 5219-5238. [DOI:10.2174/13816128113199990381]
4. Gupta M, Kaur A, Singh TG, Bedi O. Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease. Inflammation research 2020: 69(9): 851-867. [DOI:10.1007/s00011-020-01373-7]
5. Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of nonalcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Annals of medicine 2011; 43(8): 617-649. [DOI:10.3109/07853890.2010.518623]
6. Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition and metabolism 2005; 2(1): 5. [DOI:10.1186/1743-7075-2-5]
7. Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance: evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamester model. The journal of biological chemistry 2000; 275(12): 8416-8125. [DOI:10.1074/jbc.275.12.8416]
8. Hsieh FC, Lee CL, Chai CY, Chen WT, Lu YC, Wu CS. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutrition and metabolism 2013; 10(1): 35. [DOI:10.1186/1743-7075-10-35]
9. Taskinen MR, Packard CJ, Borén J. Dietary fructose and the metabolic syndrome. Nutrients 2019; 11(9): 1987. [DOI:10.3390/nu11091987]
10. Lee JS, Jun DW, Kim EK, Jeon HJ, Nam HH, Saeed WK. Histologic and metabolic derangement in high-fat, high-fructose, and combination diet animal models. The scientific world journal 2015; 2015: 306326. [DOI:10.1155/2015/306326]
11. Cioffi F, Senese R, Lasala P, Ziello A, Mazzoli A, Crescenzo R, Liverini G, Lanni A, Goglia F, Iossa S. Fructose-rich diet affects mitochondrial DNA damage and repair in rats. Nutrients 2017; 9(4): 323. [DOI:10.3390/nu9040323]
12. Taleb Dida N, Krouf D, Bouchenak M. Globularia alypum aqueous extract decreases hypertriglyceridemia and ameliorates oxidative status of the muscle, kidney, and heart in rats fed a high-fructose diet. Nutrition research 2011; 31(6): 488-495. [DOI:10.1016/j.nutres.2011.05.005]
13. Karuna R, Saralakumari D. Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Journal of diabetes Mellitus 2011; 1(3): 63-70. [DOI:10.4236/jdm.2011.13010]
14. Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, Kanoski SE. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2015; 25(2): 227-239. [DOI:10.1002/hipo.22368]
15. García Berumen CI, Ortiz Avila O, Vargas Vargas MA, del Rosario Tamayo BA, Guajardo López C, Saavedra Molina A, Rodríguez Orozco AR,Cortés Rojo C. The severity of rat liver injury by fructose and high fat depends on the degree of respiratory dysfunction and oxidative stress induced in mitochondria. Lipids in health and disease 2019; 18(1): 78. [DOI:10.1186/s12944-019-1024-5]
16. Mock K, Lateef S, Benedito VA, Tou JC. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. The journal of nutritional biochemistry 2017; 39: 32-39. [DOI:10.1016/j.jnutbio.2016.09.010]
17. Collison KS, Maqbool ZM, Inglis AL, Makhoul NJ, Saleh SM, Bakheet RH, Al-Johi MA, Al-Rabiah RK, Zaidi MZ, Al-Mohanna FA. Effect of dietary monosodium glutamate on HFCS-induced hepatic steatosis: expression profiles in the liver and visceral fat. Obesity 2010; 18(6): 1122-1134. [DOI:10.1038/oby.2009.502]
18. Zhang C, Chen X, Zhu R-M, Zhang Y, Yu T, Wang H, Zhao H, Zhao M, Ji YL, Chen YH, Meng XH, Wei W, Xu DX. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicology letters 2012; 212(3): 229-240. [DOI:10.1016/j.toxlet.2012.06.002]
19. Zhang JM, Jianxiong A. Cytokines, inflammation and pain. International anesthesiology clinics 2007; 45(2): 27-37. [DOI:10.1097/AIA.0b013e318034194e]
20. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. International journal of molecular sciences 2019; 20(23): 6008. [DOI:10.3390/ijms20236008]
21. Wang C, Wang X, Song G, Xing H, Yang L, Han K, Chang YZ. A high-fructose diet in rats induces systemic iron deficiency and hepatic iron overload by an inflammation mechanism. Journal of food biochemistry 2021; 45(1): e13578. [DOI:10.1111/jfbc.13578]
22. Han X, Li W, Huang D, Yang X. Polyphenols from hawthorn peels and fleshes differently mitigate dyslipidemia, inflammation and oxidative stress in association with modulation of liver injury in high fructose diet-fed mice. Chemico biological interactions 2016; 257: 132-140. [DOI:10.1016/j.cbi.2016.08.002]
23. Al-Qahtani S, Bryzgalova G, Efendić S, Berggren P, Portwood N. Activation of hepatic AMPK by 17β-estradiol suppresses both nuclear receptor Nr2c2/TR4 and its downstream lipogenic targets, reduces gluconeogenic genes and improves insulin signaling. Disease and molecular medicine 2016; 4: 55-67. [DOI:10.5455/dmm.20160929104837]
24. Busserolles Jrm, Gueux E, Rock E, Demigne C, Mazur A, Rayssiguier Y. Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. The journal of nutrition 2003; 133(6): 1903-1908. [DOI:10.1093/jn/133.6.1903]
25. Collison KS, Saleh SM, Bakheet RH, Al‐Rabiah RK, Inglis AL, Makhoul NJ, Maqbool1 ZM, Zaidi MZ, MA Al Johi MA, Al Mohanna FA. Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS‐55. Obesity 2009; 17(11): 2003-2013. [DOI:10.1038/oby.2009.58]
26. Martins CC, Bagatini MD, Simões JLB, Cardoso AM, Baldissarelli J, Dalenogare DP, Dos Santos DL, Chitolina Schetinger MR, Morsch VM. Increased oxidative stress and inflammatory markers contrast with the activation of the cholinergic anti-inflammatory pathway in patients with metabolic syndrome. Clinical biochemistry 2021; 89: 63-69. [DOI:10.1016/j.clinbiochem.2020.12.007]
27. Tan BL, Norhaizan ME, Liew WPP. Nutrients and oxidative stress: friend or foe? Oxidative medicine and cellular longevity 2018; 2018: 9719584. [DOI:10.1155/2018/9719584]
28. Crescenzo R, Bianco F, Falcone I, Coppola P, Liverini G, Iossa S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. European journal of nutrition 2013; 52(2): 537-545. [DOI:10.1007/s00394-012-0356-y]
29. Botezelli JD, Cambri LT, Ghezzi AC, Dalia RA, Voltarelli FA, de Mello MAR. Fructose-rich diet leads to reduced aerobic capacity and to liver injury in rats. Lipids in health and disease 2012; 11: 78. [DOI:10.1186/1476-511X-11-78]
30. Kostogrys RB, Pisulewski PM. Effect of conjugated linoleic acid (CLA) on lipid profile and liver histology in laboratory rats fed high-fructose diet. Environmental toxicology and pharmacology 2010; 30(3): 245-250. [DOI:10.1016/j.etap.2010.06.006]
31. Zhang HF, Shi LJ, Song GY, Cai ZG, Wang C, An RJ. Protective effects of matrine against progression of high-fructose diet-induced steatohepatitis by enhancing antioxidant and anti-inflammatory defences involving Nrf2 translocation. Food and chemical toxicology 2013; 55: 70-77. [DOI:10.1016/j.fct.2012.12.043]
32. Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, eandidier N, Maillard E, E, Sigrist S, Dal S. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutrition and metabolism 2016; 13: 15. [DOI:10.1186/s12986-016-0074-1]
33. Di Minno A, Turnu L, Porro B, Squellerio I, Cavalca V, Tremoli E, Di Minno MND. 8-Hydroxy-2-deoxyguanosine levels and cardiovascular disease: a systematic review and meta-analysis of the literature. Antioxidants and redox signaling 2016; 24(10): 548-555. [DOI:10.1089/ars.2015.6508]
34. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes GT and AC substitutions. Journal of biological chemistry 1992; 267(1): 166-172. [DOI:10.1016/S0021-9258(18)48474-8]
35. Guo Z, Liu X, Liu Y, Wu G, Lu X. Constructing a novel 8-hydroxy-2′-deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages of DNA and guanine. Biosensors and bioelectronics 2016; 86: 671-676. [DOI:10.1016/j.bios.2016.07.033]
36. Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D, Dong J, Zhang D, Jurczak MJ, Löffler MG, Cresswell J, Yu XX, Murray SF, Bhanot S, Monia BP, Bogan JS, Samuel V, Shulman GI. The role of peroxisome proliferator-activated receptor γ coactivator-1 β in the pathogenesis of fructose-induced insulin resistance. Cell metabolism 2009; 9(3): 252-264. [DOI:10.1016/j.cmet.2009.01.011]
37. Baena M, Sangüesa G, Dávalos A, Latasa MJ, Sala Vila A, Sánchez RM, Roglans N, Laguna JC, Alegret M. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Scientific reports 2016; 6: 26149. [DOI:10.1038/srep26149]
38. Alwahsh SM, Xu M, Seyhan HA, Ahmad S, Mihm S, Ramadori G, Schultze FC. Diet high in fructose leads to an overexpression of lipocalin-2 in rat fatty liver. World journal of gastroenterology 2014; 20(7): 1807-1821. [DOI:10.3748/wjg.v20.i7.1807]
39. George J, Pera N, Phung N, Leclercq I, Hou JY, Farrell G. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. Journal of hepatology 2003; 39(5): 756-764. [DOI:10.1016/S0168-8278(03)00376-3]
40. Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiological reviews 2010; 90(1): 23-46. [DOI:10.1152/physrev.00019.2009]
41. Crescenzo R, Cigliano L, Mazzoli A, Cancelliere R, Carotenuto R, Tussellino M, Liverini G, Iossa S. Early effects of a low fat, fructose-rich diet on liver metabolism, insulin signaling, and oxidative stress in young and adult rats. Frontiers in physiology 2018; 9: 411. [DOI:10.3389/fphys.2018.00411]
42. Li W, Lu Y. Hepatoprotective effects of sophoricoside against fructose‐induced liver injury via regulating lipid metabolism, oxidation, and inflammation in mice. Journal of food science 2018; 83(2): 552-558. [DOI:10.1111/1750-3841.14047]
43. Ferder L, Ferder MD, Inserra F. The role of high-fructose corn syrup in metabolic syndrome and hypertension. Current hypertension reports 2010; 12(2): 105-112. [DOI:10.1007/s11906-010-0097-3]
44. Le MT, Frye RF, Rivard CJ, Cheng J, McFann KK, Segal MS, RJ Johnson, Johnson JA. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 2012; 61(5): 641-651. [DOI:10.1016/j.metabol.2011.09.013]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.