Volume 27, Issue 6 (11-2023)                   IBJ 2023, 27(6): 349-356 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taghizadeh Pirposhteh R, Arefian E, Arashkia A, Mohajel N. Nona-Arginine Mediated Anti-E6 ShRNA Delivery Suppresses the Growth of Hela Cells in vitro. IBJ 2023; 27 (6) :349-356
URL: http://ibj.pasteur.ac.ir/article-1-3963-en.html
Background: The E6 oncoprotein of HPV plays a crucial role in promoting cell proliferation and inhibiting apoptosis, leading to tumor growth. Non-viral vectors such as nona-arginine (R9) peptides have shown to be potential as carriers for therapeutic molecules. This study aimed to investigate the efficacy of nona-arginine in delivering E6 shRNA and suppressing the E6 gene of HeLa cells in vitro.
Methods: HeLa cells carrying E6 gene were treated with a complex of nona-arginine and E6 shRNA. The complex was evaluated using gel retardation assay and FESEM microscopy. The optimal N/P ratio for R9 peptide to transfect HeLa cells with luciferase gene was determined.  Relative real-time PCR was used to evaluate the efficiency of mRNA suppression efficiency for E6 shRNA, while the effect of E6 shRNA on cell viability was measured using an MTT assay.
Results: The results indicated that R9 efficiently binds to shRNA and effectively transfects E6 shRNA complexes at N/P ratios greater than 30. Transfection with R9 and polyethylenimine complexes resulted in a significant toxicity compared to the scrambled plasmid, indicating selective toxicity for HeLa cells. Real-time PCR confirmed the reduction of E6 mRNA expression levels in the cells transfected with anti-E6 shRNA.
Conclusion: The study suggests that R9 is a promising non-viral gene carrier for transfecting E6 shRNA in vitro, with significant transfection efficiency and minimal toxicity.

1. Singh D, Vignat J, Lorenzoni V, Eslahi M, Ginsburg O, Lauby-Secretan B, Arbyn M, Basu P, Bray F, Vaccarella S. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO global cervical cancer elimination initiative. The lancet global health 2023; 11: e197-206 [DOI:10.1016/S2214-109X(22)00501-0]
2. Durst M, Gissmann L, Ikenberg H, Zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proceedings of the national academy of Sciences of the United States of America 1983; 80(12): 3812-3815. [DOI:10.1073/pnas.80.12.3812]
3. Clifford G, Franceschi S, Diaz M, Muñoz N, Villa LL. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine 2006; 24 (Suppl 3): S3/26-34. [DOI:10.1016/j.vaccine.2006.05.026]
4. Xu HH, Zheng LZ, Lin AF, Dong SS, Chai ZY, Yan WH. Human papillomavirus (HPV) 18 genetic variants and cervical cancer risk in Taizhou area, China. Gene 2018; 647: 192-197. [DOI:10.1016/j.gene.2018.01.037]
5. Seedorf K, Oltersdorf T, Krämmer G, Röwekamp W. Identification of early proteins of the human papilloma viruses type 16 (HPV 16) and type 18 (HPV 18) in cervical carcinoma cells. The EMBO journal 1987; 6(1): 139-144. [DOI:10.1002/j.1460-2075.1987.tb04731.x]
6. Sima N, Wang W, Kong D, Deng D, Xu Q, Zhou J, Xu G, Meng L, Lu Y, Wang S, Ma D. RNA interference against HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical cancer cells and apoptosis via upregulation of Rb and p53. Apoptosis 2008; 13(2): 273-281 [DOI:10.1007/s10495-007-0163-8]
7. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends in microbiology 2018; 26(2):158-168. [DOI:10.1016/j.tim.2017.07.007]
8. Rautela I, Sharma A, Dheer P, Thapliyal P, Sahni S, Sinha VB, Sharma MD. Extension in the approaches to treat cancer through siRNA system: a beacon of hope in cancer therapy. Drug delivery and translational research 2022; 12(5): 1002-1016. [DOI:10.1007/s13346-021-00995-6]
9. Rao DD, Senzer N, Cleary MA, Nemunaitis J. Comparative assessment of siRNA and shRNA off target effects: What is slowing clinical development. Cancer gene therapy 2009; 16(11): 807-809. [DOI:10.1038/cgt.2009.53]
10. Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: Similarities and differences. Advanced drug delivery reviews 2009; 61(9): 746-759. [DOI:10.1016/j.addr.2009.04.004]
11. Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, Zhang WJ, Jiang SF, Qadir A, Qian AR. The development of functional non-viral vectors for gene delivery. International journal of molecular sciences 2019; 20(21): 5491 [DOI:10.3390/ijms20215491]
12. Yang W, George JTA. Peptides as Promising Non-Viral Vectors for gene Therapy. Non-Viral Gene Therapy InTech 2011, Available from: http://dx.doi.org/ 10.5772/18636. [DOI:10.5772/18636]
13. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A. Mechanisms of cellular uptake of cell-penetrating peptides. Journal of biophysics 2011; 2011: 414729. [DOI:10.1155/2011/414729]
14. Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, RJafari, Yousef Javadzadeh. Nanoparticle-mediated synergistic chemo-immunotherapy for tailoring cancer therapy: recent advances and perspectives. Journal of nano-biotechnology 2021; 19(1): 110. [DOI:10.1186/s12951-021-00861-0]
15. Singh T, Murthy ASN, Yang HJ, Im J. Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug delivery 2018; 25(1): 1996-2006 [DOI:10.1080/10717544.2018.1543366]
16. Wang YH, Hou YW, Lee HJ. An intracellular delivery method for siRNA by an arginine-rich peptide. Journal of biochemical and biophysical methods 2007; 70(4): 579-586. [DOI:10.1016/j.jbbm.2007.01.010]
17. Wang ZL, Zhou W, Xiong ZA, Yu TH, Wu LM, Li CX, Yao CG, Wu YT , Hua YY . Irreversible electroporation-mediated shRNA knockdown of the HPV18 E6 gene suppresses cervical cancer growth in vitro and in vivo. Oncology letters 2017; 14(2): 1943-1949. [DOI:10.3892/ol.2017.6405]
18. Yamato K, Fen J, Kobuchi H, Nasu Y, Yamada T, Nishihara T, Ikeda Y, Kizaki M, Yoshinouchi M. Induction of cell death in human papillomavirus 18-positive cervical cancer cells by E6 siRNA. Cancer gene therapy 2006; 13(3): 234-241. [DOI:10.1038/sj.cgt.7700891]
19. Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y, Nishihara T, Yamato K. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Molecular therapy 2003; 8(5): 762-768. [DOI:10.1016/j.ymthe.2003.08.004]
20. Togtema M, Jackson R, Grochowski J, Villa PL, Mellerup M, Chattopadhyaya J, Zehbe I. Synthetic siRNA targeting human papillomavirus 16 E6: A perspective on in vitro nanotherapeutic approaches. Nanomedicine 2018; 13(4): 455-474. [DOI:10.2217/nnm-2017-0242]
21. Tian R, Liu J, Fan W, Li R, Cui Z, Jin Z, Huang Z, Hongxian Xie, Lifang Li, Huang Z, Hu Z, Zhou P, Tian X. Gene knock-out chain reaction enables high disruption efficiency of HPV18 E6/E7 genes in cervical cancer cells. Molecular therapy oncolytics 2022; 24: 171-179. [DOI:10.1016/j.omto.2021.12.011]
22. Scheffner M, Munger K, Byrne JC, Howley PM. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proceedings of the national academy of sciences of the united states of america 1991; 88(13): 5523-5527. [DOI:10.1073/pnas.88.13.5523]
23. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003; 22(38): 5938-5945. [DOI:10.1038/sj.onc.1206894]
24. Chang JTC, Kuo TF, Chen YJ, Chiu CC, Lu YC, Li HF, Shen CR, Cheng AJ. Highly potent and specific siRNAs against E6 or E7 genes of HPV16-or HPV18-infected cervical cancers. Cancer gene therapy 2010; 17(12): 827-836. [DOI:10.1038/cgt.2010.38]
25. Thapa RK, Sullivan MO. Gene delivery by peptide-assisted transport. Current opinion in biomedical engineering 2018; 7: 71-82. [DOI:10.1016/j.cobme.2018.10.002]
26. Anastasov N, Klier M, Koch I, Angermeier D, Höfler H, Fend F, Quintanilla-Martinez L. Efficient shRNA delivery into B and T lymphoma cells using lentiviral vector-mediated transfer. Journal of hematopathology 2009; 2(1): 9-19. [DOI:10.1007/s12308-008-0020-x]
27. Alhakamy NA, Berkland CJ. Polyarginine molecular weight determines transfection efficiency of calcium condensed complexes. Molecular pharmaceutics 2013; 10(5): 1940-1948. [DOI:10.1021/mp3007117]
28. Alhakamy NA, Dhar P, Berkland CJ. Charge type, charge spacing, and hydrophobicity of arginine-rich cell-penetrating peptides dictate gene transfection. Molecular pharmaceutics 2016; 13(3): 1047-1057. [DOI:10.1021/acs.molpharmaceut.5b00871]
29. Kim WJ, Christensen L V., Jo S, Yockman JW, Jeong JH, Kim YH, Kim SW. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Molecular therapy : the journal of the american society of gene therapy 2006; 14(3): 343-350. [DOI:10.1016/j.ymthe.2006.03.022]
30. Yoo J, Lee DY, Gujrati V, Rejinold NS, Lekshmi KM, Uthaman S, Jeong C, Park IK, Jon S, Kim YC. Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. Journal of controlled 2017: 246: 142-154. [DOI:10.1016/j.jconrel.2016.04.040]
31. Heng HH. HeLa genome versus donor's genome. Nature 2013; 501(7466): 167. [DOI:10.1038/501167d]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb