Volume 27, Issue 5 (9-2023)                   IBJ 2023, 27(5): 257-268 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khaledi M, Ahmadi M H, Owlia P, Saderi H. Antimicrobial Effects of Mouse Adipose-Derived Mesenchymal Stem Cells Encapsulated in Collagen-Fibrin Hydrogel Scaffolds on Bacteroides fragilis Wound Infection in vivo. IBJ 2023; 27 (5) :257-268
URL: http://ibj.pasteur.ac.ir/article-1-3919-en.html
Background: Anaerobes are the causative agents of many wound infections. B. fragilis is the most prevalent endogenous anaerobic bacterium causes a wide range of diseases, including wound infections. This study aimed to assess the antibacterial effect of mouse adipocyte derived-mesenchymal stem cell (AD-MSCs) encapsulated in collagen-fibrin (CF) hydrogel scaffolds on B. fragilis wound infection in an animal model.
Methods: Stem cells were extracted from mouse adipose tissue and confirmed by surface markers using flow cytometry analysis. The possibility of differentiation of stem cells into osteoblast and adipocyte cells was also assessed. The extracted stem cells were encapsulated in the CF scaffold. B. fragilis wound infection was induced in rats, and then following 24 h, collagen and fibrin-encapsulated mesenchymal stem cells (MSCs) were applied to dress the wound. One week later, a standard colony count test monitored the bacterial load in the infected rats.
Results: MSCs were characterized as positive for CD44, CD90, and CD105 markers and negative for CD34, which were able to differentiate into osteoblast and adipocyte cells. AD-MSCs encapsulated with collagen and fibrin scaffolds showed ameliorating effects on B. fragilis wound infection. Additionally, AD-MSCs with a collagen scaffold (54 CFU/g) indicated a greater effect on wound infection than AD-MSCs with a fibrin scaffold (97 CFU/g). The combined CF scaffold demonstrated the highest reduction in colony count (the bacteria load down to 29 CFU/g) in the wound infection.
Conclusion:  Our findings reveal that the use of collagen and fibrin scaffold in combination with mouse AD-MSCs is a promising alternative treatment for B. fragilis.

1. Iregbu K, Uwaezuoke N, Nwajiobi-Princewill I, Eze S, Medugu N, Shettima S, Modibbo Z. A profile of wound infections in National Hospital Abuja. African journal of clinical and experimental microbiology 2013; 14(3): 160-163. [DOI:10.4314/ajcem.v14i3.7]
2. Omole IA, Stephen E. Antibiogram profile of bacteria isolated from wound infection of patients in three hospitals in Anyigba, Kogi State, Nigeria. FUTA journal of research in sciences 2014; 2: 258-266.
3. Pal N, Sharma N, Sharma R, Hooja S, Maheshwari RK. Prevalence of multidrug (MDR) and extensively drug resistant (XDR) Proteus species in a tertiary care hospital, India. International journal of current microbiology and applied sciences 2014; 3(10): 243-252.
4. Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, Nusgart M, Cartwright D. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value in health 2018; 21(1): 27-32. [DOI:10.1016/j.jval.2017.07.007]
5. Singh C, Sood A, Bala K, Tandup C, Ray P, Angrup A. Anaerobic infections in patients admitted in various surgical units of a tertiary care hospital of north India: neglected but important. Iranian journal of microbiology 2021; 13(3): 274-281. [DOI:10.18502/ijm.v13i3.6387]
6. Shenoy PA, Vishwanath S, Gawda A, Shetty S, Anegundi R, Varma M, Mukhopadhyay C, Chawla K. Anaerobic bacteria in clinical specimens-frequent, but a neglected lot: a five year experience at a tertiary care hospital. Journal of clinical and diagnostic research 2017; 11(7): DC44-DC48. [DOI:10.7860/JCDR/2017/26009.10311]
7. Aftab S, Tarik MM, Siddique MA, Yusuf MA. Clinical and microbiological aspect of wound infection: a review update. Bangladesh journal of infectious diseases 2014; 1(2): 32-36. [DOI:10.3329/bjid.v1i2.24903]
8. Smulski S, Turlewicz-Podbielska H, Wylandowska A, Włodarek J. Non-antibiotic possibilities in prevention and treatment of calf diarrhoea. Journal of veterinary research 2020; 64(1): 119-126. [DOI:10.2478/jvetres-2020-0002]
9. Goodarzi P, Alavi-Moghadam S, Sarvari M, Tayanloo Beik A, Falahzadeh K, Aghayan H, Payab M, Larijani B, Gilany K, Rahim F, Adibi H, Arjmand B. Adipose tissue-derived stromal cells for wound healing. Advances in experimental medicine and biology 2018; 1119: 133-149. [DOI:10.1007/5584_2018_220]
10. Pittenger M, Discher D, Pé ault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. Npj regenerative medicine 2019; 4: 22. [DOI:10.1038/s41536-019-0083-6]
11. Kim H, Hyun MR, Kim SW. The effect of adipose-derived stem cells on wound healing: comparison of methods of application. Stem cells international 2019; 2019: 2745640. [DOI:10.1155/2019/2745640]
12. Abdulrazzak H, de Coppi P, V Guillot P. Therapeutic potential of amniotic fluid stem cells. Current stem cell research and therapy 2013; 8(2): 117-124. [DOI:10.2174/1574888X11308020002]
13. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering 2001; 7(2): 211-228. [DOI:10.1089/107632701300062859]
14. Kim CG, Lee JJ, Jung DY, Jeon J, Heo HS, Kang HC, Shin JH, Cho YS, Cha KJ, Kim CG, Do BR, Kim KS, Kim HS. Profiling of differentially expressed genes in human stem cells by cDNA microarray. Molecules and Cells 2006; 21(3): 343-355. [DOI:10.1096/fasebj.21.5.A229-a]
15. Benayahu D. Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing. Biomaterials translational 2022; 3(1): 17-21.
16. Sheykhhasan M, Qomi RT, Ghiasi M. Fibrin scaffolds designing in order to human adipose-derived mesenchymal stem cells differentiation to chondrocytes in the presence of TGF-β3. International journal of stem cells 2015; 8(2): 219-227. [DOI:10.15283/ijsc.2015.8.2.219]
17. Sananta P, Rahaditya I, Imadudin MI, Putera MA, Andarini S, Kalsum U, Mustamsir E, Dradjat RS. Collagen scaffold for mesencyhmal stem cell from stromal vascular fraction (biocompatibility and attachment study): Experimental paper. Annals of medicine and surgery 2020; 59: 31-34. [DOI:10.1016/j.amsu.2020.07.055]
18. Mirshekar M, Afkhami H, Razavi S, Masjedian Jazi F, Darban-Sarokhalil D, Ohadi E, Mottaghi Nezhad M, Karimi R. Potential antibacterial activity and healing effect of topical administration of bone marrow and adipose mesenchymal stem cells encapsulated in collagen-fibrin hydrogel scaffold on full-thickness burn wound infection caused by Pseudomonas aeruginosa. Burns 2023. Available at: https://doi.org/10.1016/j.burns.2023.01.005 [DOI:10.1016/j. burns.2023.01.005.]
19. Boregowda SV, Krishnappa V, Phinney DG. Isolation of mouse bone marrow mesenchymal stem cells. Methods in molecular biology 2016; 1416: 205-223. [DOI:10.1007/978-1-4939-3584-0_11]
20. Hu Y, Lou B, Wu X, Wu R, Wang H, Gao L, Pi J, Xu Y. Comparative study on in vitro culture of mouse bone marrow mesenchymal stem cells. Stem cells international 2018; 2018: 6704583. [DOI:10.1155/2018/6704583]
21. Ramos TL, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, Hernández-Hernández A, Redondo A, Ortega R, Rodríguez C, Sánchez-Guijo F, del Cañizo C. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell communication and signaling 2016; 14: 2. [DOI:10.1186/s12964-015-0124-8]
22. Hasanzadeh E, Ebrahimi‐Barough S, Mirzaei E, Azami M, Tavangar SM, Mahmoodi N, Basiri A, Ai J. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. Journal of biomedical materials research part A 2019; 107(4): 802-814. [DOI:10.1002/jbm.a.36596]
23. Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, Scott 3rd WE, Ferreira AM. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Materials science and engineering: C 2018; 91: 236-246. [DOI:10.1016/j.msec.2018.04.101]
24. Chan BP, Hui TY, Yeung CW, Li J, Mo I, Chan GCF. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials 2007; 28(31): 4652-4666. [DOI:10.1016/j.biomaterials.2007.07.041]
25. Dao TT, Nguyen CT, Vu NB, Le HT, Nguyen PD, Van Pham P. Evaluation of proliferation and osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells in porous scaffolds. Advances in experimental medicine and biology 2019; 1084: 207-220. [DOI:10.1007/5584_2019_343]
26. Minnich KE, Stolarick R, Wilkins RG, Chilson G, Pritt SL, Unverdorben M. The effect of a wound care solution containing polyhexanide and betaine on bacterial counts: results of an in vitro study . Ostomy wound manage 2012; 58(10): 32-36.
27. Yekani M, Rezaee MA, Beheshtirouy S, Baghi HB, Bazmani A, Farzinazar A, Memar MY, Sóki J. Carbapenem resistance in Bacteroides fragilis: A review of molecular mechanisms. Anaerobe 2022; 76: 102606. [DOI:10.1016/j.anaerobe.2022.102606]
28. Falagas ME, Siakavellas E. Bacteroides, Prevotella, and Porphyromonas species: a review of antibiotic resistance and therapeutic options. International journal of antimicrobial agents 2000; 15(1): 1-9. [DOI:10.1016/S0924-8579(99)00164-8]
29. Guo J, Yao H, Li X, Chang L, Wang Z, Zhu W, Su Y, Qin L, Xu J. Advanced hydrogel systems for mandibular reconstruction. Bioactive materials 2023; 21: 175-193. [DOI:10.1016/j.bioactmat.2022.08.001]
30. Sutton MT, Fletcher D, Episalla N, Auster L, Kaur S, Gwin MC, Folz M, Velasquez D, Roy V, van Heeckeren R, Lennon DP, Caplan AI, Bonfield TL. Mesenchymal stem cell soluble mediators and cystic fibrosis. Journal of stem cell research and therapy 2017; 7(9): 400. [DOI:10.4172/2157-7633.1000400]
31. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem cells 2010; 28(12): 2229-2238. [DOI:10.1002/stem.544]
32. Alcayaga-Miranda F, Cuenca J, Martin A, Contreras L, Figueroa FE, Khoury M. Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem cell research and therapy 2015; 6: 199. [DOI:10.1186/s13287-015-0192-0]
33. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. Journal of advanced research 2020; 21: 169-176. [DOI:10.1016/j.jare.2019.10.005]
34. Perlee D, deVos AF, Scicluna BP, Mancheño P, de la Rosa O, Dalemans W, Nürnberg P, Lombardo E, van der Poll T. Human adipose-derived mesenchymal stem cells modify lung immunity and improve antibacterial defense in pneumosepsis caused by Klebsiella pneumoniae. Stem cells translational medicine 2019; 8(8): 785-796. [DOI:10.1002/sctm.18-0260]
35. Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, Gupta N, Petrini M, Matthay MA. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American journal of physiology-lung cellular and molecular physiology 2012; 302(10): L1003-L10013. [DOI:10.1152/ajplung.00180.2011]
36. Sutton MT, Fletcher D, Ghosh SK, Weinberg A, van Heeckeren R, Kaur S, Sadeghi Z, Hijaz A , Reese J, Lazarus HM, Lennon DP, Caplan AI, Bonfield TL. Antimicrobial properties of mesenchymal stem cells: therapeutic potential for cystic fibrosis infection, and treatment. Stem cells international 2016; 2016: 5303048. [DOI:10.1155/2016/5303048]
37. Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. American journal of respiratory and critical care medicine 2013; 187(7): 751-760. [DOI:10.1164/rccm.201206-0990OC]
38. Chow L, Johnson V, Impastato R, Coy J, Strumpf A, Dow S. Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells. Stem cells translational medicine 2020; 9(2): 235-249. [DOI:10.1002/sctm.19-0092]
39. Saberpour M, Bakhshi B, Najar-Peerayeh S. Evaluation of the antimicrobial and antibiofilm effect of chitosan nanoparticles as carrier for supernatant of mesenchymal stem cells on multidrug-resistant Vibrio cholerae. Infection and drug resistance 2020; 13: 2251-2260. [DOI:10.2147/IDR.S244990]
40. Saeedi P, Halabian R, Fooladi AAI. Antimicrobial effects of mesenchymal stem cells primed by modified LPS on bacterial clearance in sepsis. Journal of cellular physiology 2019; 234(4): 4970-4986. [DOI:10.1002/jcp.27298]
41. Shahabadi AB, Memar MY, Dizaj SM, Sharifi S. Antimicrobial effects of curcumin containing collagen scaffolds against Streptococcus mutans. Journal of advanced chemical and pharmaceutical materials 2019; 2(4): 197-198.
42. Kim H, Darwish I, Monroy MF, Prockop DJ, Liles WC, Kain KC. Mesenchymal stromal (stem) cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome. BMC immunology 2014; 15(1): 1. [DOI:10.1186/1471-2172-15-1]
43. Hackstein H, Lippitsch A, Krug P, Schevtschenko I, Kranz S, Hecker M, Dietert K, Gruber AD, Bein G, Brendel C, Baal N. Prospectively defined murine mesenchymal stem cells inhibit Klebsiella pneumoniae-induced acute lung injury and improve pneumonia survival. Respiratory research 2015; 16(1): 123. [DOI:10.1186/s12931-015-0288-1]
44. Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus in mesenchymal stromal/stem cells. Stem cell research and therapy 2017; 8(1): 171. [DOI:10.1186/s13287-017-0623-1]
45. Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. European journal of cell biology 2019; 98(5-8): 151041. [DOI:10.1016/j.ejcb.2019.04.002]
46. Mahmoudvand G, Rouzbahani AK, Razavi ZS, Mahjoor M, Afkhami H. Mesenchymal stem cell therapy for non-healing diabetic foot ulcer infection: New insight. Frontiers in bioengineering and biotechnology 2023; 11: 1158484. [DOI:10.3389/fbioe.2023.1158484]
47. Yamamuro Y, Kabata T, Nojima T, Hayashi K, Tokoro M, Kajino Y, Inoue D, Ohmori T, Yoshitani J, Ueno T, Ueoka K, Taninaka A, Kataoka T, Saiki Y, Yanagi Y, Tsuchiya H. Combined adipose-derived mesenchymal stem cell and antibiotic therapy can effectively treat periprosthetic joint infection in rats. Scientific reports 2023; 13(1): 3949. [DOI:10.1038/s41598-023-30087-z]
48. Berechet MD, Gaidau C, Nešić A, Constantinescu RR, Simion D, Niculescu O, Stelescu MD, Sandulache I , Râpă M. Antioxidant and antimicrobial properties of hydrolysed collagen nanofibers loaded with ginger essential oil. Materials 2023; 16(4): 1438. [DOI:10.3390/ma16041438]
49. Hu L, Zhou J, He Z, Zhang L, Du F, Nie M, Zhou Y, Hao H, Zhang L, Yu S, Zhang J, Chen Y. In situ-formed fibrin hydrogel scaffold loaded with human umbilical cord mesenchymal stem cells promotes skin wound healing. Cell transplantation 2023; 32: 09636897231156215. [DOI:10.1177/09636897231156215]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb