Volume 27, Issue 5 (9-2023)                   IBJ 2023, 27(5): 247-256 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khani-Eshratabadi M, Mousavi S H, Zarrabi M, Motallebzadeh Khanmiri J, Zeinali Bardar Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Microvesicles Could Induce Apoptosis and Autophagy in Acute Myeloid Leukemia. IBJ 2023; 27 (5) :247-256
URL: http://ibj.pasteur.ac.ir/article-1-3905-en.html
Background: Microvesicles (MV) have been identified as candidate biomarkers for treating acute myeloid leukemia (AML). This study investigated the effects of human umbilical cord-derived mesenchymal stem cell (hUCMSC)-derived MVs on apoptosis and autophagy in the KG-1 leukemic cell line.
Methods: The hUCMSCs were cultured and characterized by flow cytometry. MVs were isolated by ultracentrifugation, and the concentration was determined using the Bradford method. The characteristics of MVs were confirmed by transmission electron microscopy, flow cytometry, and dynamic light scattering methods. KG-1 cells were treated with the desired concentrations of MVs for 24 h. The apoptosis induction and reactive oxygen species production were evaluated using flow cytometry. RT-PCR was performed to evaluate apoptosis- and autophagy-related genes expression.
Results: Following tretment of KG-1 cells with 25, 50, and 100 μg/ml concentrations of MVs, the apoptosis rates were 47.85%, 47.15%, and 51.35% (p < 0.0001), and the autophagy-induced ROS levels were 73.9% (p < 0.0002), 84.8% (p < 0.0001), and 85.4% (p < 0.000), respectively. BAX and ATG7 gene expression increased significantly at all concentrations compared to the control, and this level was higher at 50 μg/ml than that of the other concentrations. In addition, LC3 and Beclin 1 expression increased significantly in a concentration-dependen manner. Conversely, BCL2 expression decreased compared to the control.
Conclusion: Our findings indicate that hUCMSC-MVs could induce cell death pathways of autophagy and apoptosis in the KG-1 cell lines and exert potent antiproliferative and proapoptotic effects on KG-1 cells in vitro. Therefore, hUCMSC-MVs may be a potential approach for cancer therapy as a novel cell-to-cell communication strategy.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

1. Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, López JA, Costa ASH , Tronci L, Nikitopoulou E, Barber M, Gallipoli P, Marando L , de Castillejo CLF, Tzankov A, Dietmann S, Cavo M , Catani L, Curti A, Vázquez J, Frezza C, Huntly BJ , Schwaller J, Méndez-Ferrer S. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell metabolism 2020; 32(5): 829-843. [DOI:10.1016/j.cmet.2020.09.001]
2. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391-2405. [DOI:10.1182/blood-2016-03-643544]
3. Faderl S, Kantarjian HM. Clinical Manifestations and Treatment of Acute Myeloid Leukemia. Hematology: Basic Principles and Practice. Netherland: Elsevier; 2018. [DOI:10.1016/B978-0-323-35762-3.00059-7]
4. Bret C, Viziteu E, Kassambara A, Moreaux J. Identifying high-risk adult AML patients: epigenetic and genetic risk factors and their implications for therapy. Expert review of hematology 2016; 9(4): 351-360. [DOI:10.1586/17474086.2016.1141673]
5. Mozessohn L, Cheung MC, Mittmann N, Earle CC, Liu N, Buckstein R. Real-world costs of azacitidine treatment in patients with higher-risk myelodysplastic syndromes/low blast-count acute myeloid leukemia. JCO oncology practice 2021; 17(4): e517-e525. [DOI:10.1200/OP.20.00446]
6. Cerrano M, Itzykson R. New treatment options for acute myeloid leukemia in 2019. Current oncology reports 2019; 21(2): 1-12. [DOI:10.1007/s11912-019-0764-8]
7. Finn L, Sproat L, Heckman MG, Jiang L, Diehl NN, Ketterling R, Tibes R, Valdez R, Foran J . Epidemiology of adult acute myeloid leukemia: impact of exposures on clinical phenotypes and outcomes after therapy. Cancer epidemiology 2015; 39(6): 1084-1092. [DOI:10.1016/j.canep.2015.09.003]
8. Shi W, Jin W, Xia L, Hu Y. Novel agents targeting leukemia cells and immune microenvironment for prevention and treatment of relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Acta pharmaceutica sinica B 2020; 10(11): 2125-2139. [DOI:10.1016/j.apsb.2020.06.012]
9. Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, Giebel B. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. International journal of molecular sciences 2017; 18(7): 1450. [DOI:10.3390/ijms18071450]
10. Hornick NI, Doron B, Abdelhamed S, Huan J, Harrington CA, Shen R, Cambronne XA, Verghese SC, Kurre P. AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Science signaling 2016; 9(444): ra88-ra. [DOI:10.1126/scisignal.aaf2797]
11. Zhang L, Khadka B, Wu J, Feng Y, Long B, Xiao R, Liu J. Bone marrow mesenchymal stem cells-derived exosomal miR-425-5p inhibits acute myeloid leukemia cell proliferation, apoptosis, invasion and migration by targeting WTAP. Oncotargets and therapy 2021; 14: 4901-4914. [DOI:10.2147/OTT.S286326]
12. Chao KC, Yang HT, Chen MW. Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. Journal of cellular and molecular medicine 2012; 16(8): 1803-1815. [DOI:10.1111/j.1582-4934.2011.01459.x]
13. Drissi H, Gibson JD, Guzzo RM, Xu RH. Derivation and chondrogenic commitment of human embryonic stem cell-derived mesenchymal progenitors. Methods in molecular biology 2015; 1340: 65-78. [DOI:10.1007/978-1-4939-2938-2_5]
14. Wu S, Ju GQ, Du T, Zhu YJ, Liu GH. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PloS one 2013; 8(4): e61366. [DOI:10.1371/journal.pone.0061366]
15. El Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nature reviews drug discovery 2013; 12(5): 347-357. [DOI:10.1038/nrd3978]
16. Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C, Camussi G. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem cells 2012; 30(9): 1985-1998. [DOI:10.1002/stem.1161]
17. Ji Y, Ma Y, Chen X, Ji X, Gao J, Zhang L, Ye K, Qiao F, Dai Y, Wang H, Wen X , Lin J, Hu J. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells. Oncology reports 2017; 38(2): 1013-20. [DOI:10.3892/or.2017.5729]
18. Zhou O, You J, Xu X, Liu J, Qiu H, Hao C, Zou W, Wu W, Fu Z, Tian D. Zou L. Microvesicles derived from human umbilical cord mesenchymal stem cells enhance alveolar type II cell proliferation and attenuate lung inflammation in a rat model of bronchopulmonary dysplasia. Stem cells international 2022; doi: 10.1155/2022/8465294. [DOI:10.1155/2022/8465294]
19. Lai RC, Yeo RWY, Lim SK. Mesenchymal stem cell exosomes. Seminars in cell and developmental biology 2015; 40: 82-88. [DOI:10.1016/j.semcdb.2015.03.001]
20. Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley interdisciplinary reviews: RNA 2012; 3(2): 286-293. [DOI:10.1002/wrna.115]
21. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20(9): 1487-1495. [DOI:10.1038/sj.leu.2404296]
22. Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exprimental and molecular medicine 2017; 49(6): e346. [DOI:10.1038/emm.2017.63]
23. Besse B, Charrier M, Lapierre V, Dansin E, LantzO, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Théry C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, von Strandmann EP, Vély F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 2016; 5(4): e1071008. [DOI:10.1080/2162402X.2015.1071008]
24. Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court F A, Del Portillo H A, O'Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Görgens A, Gupta RC, Hendrix An, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Krämer-Albers EM, Laner-Plamberger S , Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lötvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BWM, Wauben M, El Andaloussi S, Théry C, Rohde E, Giebel B. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. Journal of extracellular vesicles 2015; 4: 30087. [DOI:10.3402/jev.v4.30087]
25. Abbaszade Dibavar M, Soleimani M, Atashi A, Rassaei N, Amiri S. The effect of simultaneous administration of arsenic trioxide and microvesicles derived from human bone marrow mesenchymal stem cells on cell proliferation and apoptosis of acute myeloid leukemia cell line. Artificial cells, nanomedicine, and biotechnology 2018; 46(Sup3): S138-S46. [DOI:10.1080/21691401.2018.1489821]
26. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. Plos one 2010; 5(7): e11803. [DOI:10.1371/journal.pone.0011803]
27. Conforti A, Scarsella M, Starc N, Giorda E, Biagini S, Proia A, Carsetti R, Locatelli F, Bernardo ME. Microvescicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro. Stem cells and development 2014; 23(21): 2591-2599. [DOI:10.1089/scd.2014.0091]
28. Phetfong J, Tawonsawatruk T, Kamprom W, Ontong P, Tanyong D, Borwornpinyo S, Supokawej A. Bone marrow-mesenchymal stem cell-derived extracellular vesicles affect proliferation and apoptosis of leukemia cells in vitro. FEBS open bio 2022; 12(2): 470-479. [DOI:10.1002/2211-5463.13352]
29. Davila J, Slotkin E, Renaud T. Relapsed and refractory pediatric acute myeloid leukemia: current and emerging treatments. Pediatric drugs 2014; 16(2):151-168. [DOI:10.1007/s40272-013-0048-y]
30. Huwaikem MA, Kalamegam G, Alrefaei G, Ahmed F, Kadam R, Qadah T, Sait KHW, Pushparaj PN. Human Wharton's jelly stem cell secretions inhibit human leukemic cell line K562 in vitro byinducing cell cycle arrest and apoptosis. Frontiers in cell and developmental biology 2021; 9: 614988. [DOI:10.3389/fcell.2021.614988]
31. Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, Yuan Y, Zhu F. Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Molecular and cellular probes 2020; 51: 101513. [DOI:10.1016/j.mcp.2020.101513]
32. Phetfong J, Tawonsawatruk T, Kamprom W, Ontong P, Tanyong D, Borwornpinyo S, Supokawej A. Bone marrow-mesenchymal stem cell-derived extracellular vesicles affect proliferation and apoptosis of leukemia cells in vitro. FEBS open bio 2022; 12(2): 470-479. [DOI:10.1002/2211-5463.13352]
33. Szyposzynska A, Bielawska-Pohl A, Krawczenko A, Doszyn O, Paprocka M, Klimczak A. Suppression of ovarian cancer cell growth by AT-MSC microvesicles. International journal of molecular sciences 2020; 21(23): 9143. [DOI:10.3390/ijms21239143]
34. Xu YC, Lin YS, Zhang L, Lu Y, Sun YL, Fang ZG, Li ZY, Fan RF. MicroRNAs of bone marrow mesenchymal stem cell-derived exosomes regulate acute myeloid leukemia cell proliferation and apoptosis. Chinese medical journal 2020; 133(23): 2829-2839. [DOI:10.1097/CM9.0000000000001138]
35. Chen Wx, Zhou J, Zhou Ss, Zhang Yd, Ji Ty, Zhang Xl, Wang SM, Du T, Ding DG. Microvesicles derived from human Wharton's jelly mesenchymal stem cells enhance autophagy and ameliorate acute lung injury via delivery of miR-100. Stem cell research and therapy 2020; 11(1): 1-13. [DOI:10.1186/s13287-020-01617-7]
36. Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem cell research and therapy 2018; 9(1): 336. [DOI:10.1186/s13287-018-1078-8]
37. Hendijani F, Javanmard SH, Sadeghi-aliabadi H. Human Wharton's jelly mesenchymal stem cell secretome display antiproliferative effect on leukemia cell line and produce additive cytotoxic effect in combination with doxorubicin. Tissue and cell 2015; 47(3): 229-234. [DOI:10.1016/j.tice.2015.01.005]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb