Volume 27, Issue 2 And 3 (3-2023)                   IBJ 2023, 27(2 And 3): 84-99 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baradaran M, Pashmforoosh N. Peptides with Diverse Functions from Scorpion Venom: A Great Opportunity for the Treatment of a Wide Variety of Diseases. IBJ 2023; 27 (2 and 3) :84-99
URL: http://ibj.pasteur.ac.ir/article-1-3863-en.html
The venom glands are a rich source of biologically important peptides with a wide range of pharmaceutical properties. Scorpion venoms have been identified as a reservoir for the components which might be considered as great candidates for drug development. These components are usually used by a scorpion to capture prey and defense; however, pharmacological properties of the venom compounds have been confirmed in the treatment of different disorders, including cardiac diseases, autoimmune diseases, infections, and varied cancer types. Ion channel blockers, antimicrobial peptides and proteins, are the main groups of scorpion venom components. Despite several studies exist on the subject of scorpion peptides, there are still valuable components to be discovered. Additionally, owing to the improvement of proteomics and transcriptomics, the number of peptide drugs is steadily increasing, which reflects the importance of it. This review evaluates the available literature about some important scorpion venom peptides with pharmaceutical activities. Given that the last three years have been dominated by the COVID-19 from the medical/pharmaceutical perspective, scorpion compounds with potential against the coronavirus 2 (SARS-CoV-2) are also discussed in this review.
Type of Study: Review Article | Subject: Pharmaceutical Biotechnology

1. Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nature reviews drug discovery. 2021; 20(4): 309-325. [DOI:10.1038/s41573-020-00135-8]
2. Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget 2017; 8(59): 100908-1000930. [DOI:10.18632/oncotarget.21740]
3. Lim HN, Baek SB, Jung HJ. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules (Basel, Switzerland) 2019; 24(5): 929. [DOI:10.3390/molecules24050929]
4. Ejaz S, Hashmi FB, Malik WN, Ashraf M, Nasim FU, Iqbal M. Applications of venom proteins as potential anticancer agents. Protein and peptide letters 2018; 25(7): 688-701. [DOI:10.2174/0929866524666180614102104]
5. Suhas R. Structure, function and mechanistic aspects of scorpion venom peptides-A boon for the development of novel therapeutics. European journal of medicinal chemistry reports 2022; 6: 100068. [DOI:10.1016/j.ejmcr.2022.100068]
6. Bosmans F, Tytgat J. Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon 2007; 49(2): 142-158. [DOI:10.1016/j.toxicon.2006.09.023]
7. Gwee MC, Nirthanan S, Khoo HE, Gopalakrishnakone P, Kini RM, Cheah LS. Autonomic effects of some scorpion venoms and toxins. Clinical and experimental pharmacology and physiology 2002; 29(9): 795-801. [DOI:10.1046/j.1440-1681.2002.03726.x]
8. Chippaux JP. Emerging options for the management of scorpion stings. Drug design, development and therapy 2012; 6: 165-173. [DOI:10.2147/DDDT.S24754]
9. Cupo P. Clinical update on scorpion envenoming. Revista da sociedade brasileira de medicina tropical 2015; 48(6): 642-649. [DOI:10.1590/0037-8682-0237-2015]
10. Ding J, Chua PJ, Bay BH, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental biology and medicine 2014; 239(4): 387-893. [DOI:10.1177/1535370213513991]
11. Hodgson WC, Isbister GK. The application of toxins and venoms to cardiovascular drug discovery. Current opinion in pharmacology 2009; 9(2): 173-176. [DOI:10.1016/j.coph.2008.11.007]
12. Varga Z, Gurrola-Briones G, Papp F, de la Vega RCR, Pedraza-Alva G, Tajhya RB. Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells. Molecular pharmacology 2012; 82(3): 372-82. [DOI:10.1124/mol.112.078006]
13. Díaz-García A, Varela D. Voltage-Gated K+/Na+ channels and scorpion venom toxins in cancer. Frontiers in pharmacology 2020; 11: 913. [DOI:10.3389/fphar.2020.00913]
14. Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides 2014; 51: 35-45. [DOI:10.1016/j.peptides.2013.10.021]
15. Zeng XC, Corzo G, Hahin R. Scorpion venom peptides without disulfide bridges. IUBMB life 2005; 57(1): 13-21. [DOI:10.1080/15216540500058899]
16. Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+‐channels. European journal of biochemistry 1999; 264(2): 287-300. [DOI:10.1046/j.1432-1327.1999.00625.x]
17. Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005; 46(8): 831-844. [DOI:10.1016/j.toxicon.2005.09.006]
18. Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiological reviews 1992; 72(4suppl): S15-S48. [DOI:10.1152/physrev.1992.72.suppl_4.S15]
19. Rodríguez de la Vega RC, Possani LD. Current views on scorpion toxins specific for K+-channels. Toxicon 2004; 43(8): 865-875. [DOI:10.1016/j.toxicon.2004.03.022]
20. Cremonez CM, Maiti M, Peigneur S, Cassoli JS, Dutra AA, Waelkens E, Lescrinier E, Herdewijn P, de Lima ME, Pimenta AM, Arantes EC, Tytgat J. Structural and functional elucidation of peptide Ts11 shows evidence of a novel subfamily of scorpion venom toxins. Toxins (Basel) 2016; 8(10): 288. [DOI:10.3390/toxins8100288]
21. Ahmadi S, Knerr JM, Argemi L, Bordon KC, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion venom: detriments and benefits. Biomedicines 2020; 8(5): 118. [DOI:10.3390/biomedicines8050118]
22. Soorki MN, Galehdari H, Baradaran M, Jalali A. First venom gland transcriptomic analysis of Iranian yellow scorpion "Odonthubuthus doriae" with some new findings. Toxicon 2016; 120: 69-77. [DOI:10.1016/j.toxicon.2016.07.010]
23. Norton RS, McDonough SI. Peptides targeting voltage-gated calcium channels. Current pharmaceutical design 2008; 14(24): 2480-2491. [DOI:10.2174/138161208785777478]
24. Chuang RSI, Jaffe H, Cribbs L, Perez-Reyes E, Swartz KJ. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nature neuroscience 1998; 1(8): 668-674. [DOI:10.1038/3669]
25. Olamendi-Portugal T, García BI, López-González I, Van Der Walt J, Dyason K, Ulens C, et al. Two new scorpion toxins that target voltage-gated Ca2+ and Na+ channels. Biochemical and biophysical research communications 2002; 299(4): 562-568. [DOI:10.1016/S0006-291X(02)02706-7]
26. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold spring harbor perspectives in biology 2010; 2(11): a003996. [DOI:10.1101/cshperspect.a003996]
27. Xiao L, Gurrola GB, Zhang J, Valdivia CR, SanMartin M, Zamudio FZ, Zhang L, Possani LD, Valdivia HH. Structure-function relationships of peptides forming the calcin family of ryanodine receptor ligands. Journal of general physiology 2016; 147(5): 375-394. [DOI:10.1085/jgp.201511499]
28. Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2017; 127: 46-78. [DOI:10.1016/j.neuropharm.2016.10.004]
29. DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. American journal of physiology 1993; 264(2 Pt 1): C361-C369. [DOI:10.1152/ajpcell.1993.264.2.C361]
30. Olsen ML, Schade S, Lyons SA, Amaral MD, Sontheimer H. Expression of voltage-gated chloride channels in human glioma cells. The journal of neuroscience : the official journal of the society for neuroscience 2003; 23(13): 5572-5582. [DOI:10.1523/JNEUROSCI.23-13-05572.2003]
31. Ullrich N, Gillespie GY, Sontheimer H. Human astrocytoma cells express a unique chloride current. Neuroreport 1996; 7(5): 1020-1024. [DOI:10.1097/00001756-199604100-00013]
32. Qin C, He B, Dai W, Lin Z, Zhang H, Wang X, Wang J, Zhang X, Wang G, Yin L, Zhang Q. The impact of a chlorotoxin-modified liposome system on receptor MMP-2 and the receptor-associated protein ClC-3. Biomaterials 2014; 35(22): 5908-5920. [DOI:10.1016/j.biomaterials.2014.03.077]
33. Fuller MD, Thompson CH, Zhang ZR, Freeman CS, Schay E, Szakács G, Bakos E, Sarkadi B, McMaster D, French RJ, Pohl J, Kubanek J, McCarty NA. State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin. Journal of biological chemistry 2007; 282(52): 37545-37555. [DOI:10.1074/jbc.M708079200]
34. Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, Pohl J, Kubanek J, McCarty NA. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. Journal of biological chemistry 2009; 284(38): 26051-26062. [DOI:10.1074/jbc.M109.031724]
35. Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Research in microbiology 2011; 162(4): 363-374. [DOI:10.1016/j.resmic.2011.02.005]
36. Reddy KV, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. International journal of antimicrobial agents 2004; 24(6): 536-547. [DOI:10.1016/j.ijantimicag.2004.09.005]
37. Hernández-Aponte CA, Silva-Sanchez J, Quintero-Hernández V, Rodríguez-Romero A, Balderas C, Possani LD, Gurrola GB. Vejovine, a new antibiotic from the scorpion venom of Vaejovis mexicanus. Toxicon 2011; 57(1): 84-92. [DOI:10.1016/j.toxicon.2010.10.008]
38. Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon 2015; 93: 125-135. [DOI:10.1016/j.toxicon.2014.11.233]
39. Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion venom-toxins that aid in drug development: a review. International journal of peptide research and therapeutics 2019; 25(1): 27-37. [DOI:10.1007/s10989-018-9721-x]
40. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon 2014; 88: 115-137. [DOI:10.1016/j.toxicon.2014.06.006]
41. Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. Journal of toxicology 2013; 2013: 958797. [DOI:10.1155/2013/958797]
42. Wang X, Wang G. Insights into antimicrobial peptides from spiders and scorpions. Protein and peptide letters 2016; 23(8): 707-721. [DOI:10.2174/0929866523666160511151320]
43. Conde R, Zamudio FZ, Rodríguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS letters 2000; 471(2-3): 165-168. [DOI:10.1016/S0014-5793(00)01384-3]
44. Zhu S, Tytgat J. The scorpine family of defensins: gene structure, alternative polyadenylation and fold recognition. Cellular and molecular life sciences 2004; 61(14): 1751-1763. [DOI:10.1007/s00018-004-4149-1]
45. Uawonggul N, Thammasirirak S, Chaveerach A, Arkaravichien T, Bunyatratchata W, Ruangjirachuporn W, Jearranaiprepame P, Nakamura T, Matsuda M, Kobayashi M, Hattori S, Daduang S. Purification and characterization of Heteroscorpine-1 (HS-1) toxin from Heterometrus laoticus scorpion venom. Toxicon 2007; 49(1): 19-29. [DOI:10.1016/j.toxicon.2006.09.003]
46. Abdel-Rahman MA, Quintero-Hernandez V, Possani LD. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon 2013; 74: 193-207. [DOI:10.1016/j.toxicon.2013.08.064]
47. El-Bitar AMH, Sarhan M, Abdel-Rahman MA, Quintero-Hernandez V, Aoki-Utsubo C, Moustafa MA, Possani LD, Hotta H. Smp76, a scorpine-like peptide isolated from the venom of the scorpion Scorpio maurus palmatus, with a potent antiviral activity against hepatitis C virus and dengue virus. International journal of peptide research and therapeutics 2020; 26(2): 811-821. [DOI:10.1007/s10989-019-09888-2]
48. Ji Z, Li F, Xia Z, Guo X, Gao M, Sun F, Cheng Y, Wu Y, Li W, Ali SA, Cao Z.The scorpion venom peptide Smp76 inhibits viral infection by regulating type-I interferon response. Virologica sinica 2018; 33(6): 545-556. [DOI:10.1007/s12250-018-0068-4]
49. Zerouti K, Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection. Toxin reviews. 2019; 310-324. [DOI:10.1080/15569543.2019.1614064]
50. Díaz P, D'Suze G, Salazar V, Sevcik C, Shannon JD, Sherman NE, Fox JW. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon 2009; 54(6): 802-817. [DOI:10.1016/j.toxicon.2009.06.014]
51. Dueñas-Cuellar RA, Kushmerick C, Naves LA, Batista IF, Guerrero-Vargas JA, Pires OR Jr, Fontes W, Castro MS. Cm38: a new antimicrobial peptide active against Klebsiella pneumoniae is homologous to Cn11. Protein peptide letters 2015; 22(2): 164-172. [DOI:10.2174/092986652202150128143048]
52. Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal activity against filamentous fungi of Ts1, a Multifunctional toxin from tityus serrulatus scorpion venom. Frontiers in microbiology 2017; 8: 984. [DOI:10.3389/fmicb.2017.00984]
53. Zoccal KF, da Silva Bitencourt C, Secatto A, Sorgi CA, Bordon KdCF, Sampaio SV, et al. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. Toxicon 2011; 57(7-8): 1101-1108. [DOI:10.1016/j.toxicon.2011.04.017]
54. Casella-Martins A, Ayres LR, Burin SM, Morais FR, Pereira JC, Faccioli LH, Sampaio SV, Arantes EC, Castro FA, Pereira-Crott LS. Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. Journal of venomous animals and toxins including tropical diseases 2015; 21: 46. [DOI:10.1186/s40409-015-0046-3]
55. de Oliveira Pimentel PM, de Assis DRR, Gualdrón-Lopez M, Barroso A, Brant F, Leite PG, de Lima Oliveira BC, Esper L, McKinnie SMK, Vederas JC, do Nascimento Cordeiro M, Dos Reis PVM, Teixeira MM, de Castro Pimenta AM, Borges MH, de Lima ME, Machado FS. Tityus serrulatus scorpion venom as a potential drug source for Chagas' disease: Trypanocidal and immunomodulatory activity. Clinical immunology 2021; 226: 108713. [DOI:10.1016/j.clim.2021.108713]
56. de Assis DRR, Pimentel PMO, Dos Reis PVM, Rabelo RAN, Vitor RWA, Cordeiro MDN, Felicori LF, Olórtegui CDC, Resende JM, Teixeira MM, Borges MH, de Lima ME, Pimenta AMC, Machado FS. Tityus serrulatus (scorpion): from the crude venom to the construction of synthetic peptides and their possible therapeutic application against Toxoplasma gondii infection. Frontiers in cellular and infection microbiology 2021; 11: 706618. [DOI:10.3389/fcimb.2021.706618]
57. Zhu S, Gao B, Aumelas A, del Carmen Rodríguez M, Lanz-Mendoza H, Peigneur S, Diego-Garcia E, Martin-Eauclaire MF, Tytgat J, Possani LD. MeuTXKβ1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochimica et biophysica acta (BBA)-proteins and proteomics 2010; 1804(4): 872-883. [DOI:10.1016/j.bbapap.2009.12.017]
58. Cheng Y, Sun F, Li S, Gao M, Wang L, Sarhan M, Abdel-Rahman MA, Li W, Kwok HF, Wu Y, Cao Z. Inhibitory activity of a scorpion defensin BmKDfsin3 against Hepatitis C virus. Antibiotics (Basel) 2020; 9(1): 33. [DOI:10.3390/antibiotics9010033]
59. Zeng Z, Zhang Q, Hong W, Xie Y, Liu Y, Li W, Wu Y, Cao Z. A scorpion defensin BmKDfsin4 inhibits Hepatitis B virus replication in vitro. Toxins 2016; 8(5): 124. [DOI:10.3390/toxins8050124]
60. Meng L, Xie Z, Zhang Q, Li Y, Yang F, Chen Z, Li W, Cao Z, Wu Y. Scorpion potassium channel-blocking defensin highlights a functional link with neurotoxin. Journal of biological chemistry 2016; 291(13): 7097-7106. [DOI:10.1074/jbc.M115.680611]
61. Baradaran M, Jalali A, Naderi Soorki M, Galehdari H. A novel defensin-like peptide associated with two other new cationic antimicrobial peptides in transcriptome of the iranian scorpion venom. Iranian biomedical journal 2017; 21(3): 190-196. [DOI:10.18869/acadpub.ibj.21.3.190]
62. Gao B, Sherman P, Luo L, Bowie J, Zhu S. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. FASEB journal 2009; 23(4): 1230-1245. [DOI:10.1096/fj.08-122317]
63. Gao B, Dalziel J, Tanzi S, Zhu S. Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino acids 2018; 50(8): 1025-1043. [DOI:10.1007/s00726-018-2580-0]
64. Gao B, Xu J, Rodriguez Mdel C, Lanz-Mendoza H, Hernández-Rivas R, Du W, Zhu S.Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie 2010; 92(4): 350-359. [DOI:10.1016/j.biochi.2010.01.011]
65. Baradaran M, Jolodar A, Jalali A, Navidpour S, Kafilzadeh F. Sequence analysis of lysozyme C from the scorpion Mesobuthus eupeus venom glands using semi-nested RT-PCR. Iranian red crescent medical journal 2011; 13(10): 719.
66. Baradaran M, Jalali A, Jolodar A, Ghasemian S. New caerin-like antibacterial peptide from the venom gland of the Iranian scorpion Mesobuthus eupeus: cDNA amplification and sequence analysis. African journal of biotechnology 2012; 11(44): 10176-10181. [DOI:10.5897/AJB11.3373]
67. Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, Wu Y, Li W, Harrison PL, Strong PN, Xie Y, Miller K, Cao Z. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant Gram-positive bacteria. Frontiers in microbiology 2018; 9: 1159. [DOI:10.3389/fmicb.2018.01159]
68. Zeng XC, Wang S, Nie Y, Zhang L, Luo X. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 2012; 33(1): 44-51. [DOI:10.1016/j.peptides.2011.11.012]
69. de Melo ET, Estrela AB, Santos EC, Machado PR, Farias KJ, Torres TM, Carvalho E, Lima JP, Silva-Júnior AA, Barbosa EG, Fernandes-Pedrosa Mde F.Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides 2015; 68: 3-10. [DOI:10.1016/j.peptides.2015.03.003]
70. Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Chen T, Shaw C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie 2013; 95(9): 1784-94. [DOI:10.1016/j.biochi.2013.06.003]
71. do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Júnior PH, Cabral WF, da Glória da Silva M, Eaton P, de Souza de Almeida Leite JR, Nicola AM, Albuquerque P, Silva-Pereira I. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Scientific reports 2020; 10(1): 10327. [DOI:10.1038/s41598-020-67041-2]
72. Guilhelmelli F, Vilela N, Smidt KS, de Oliveira MA, da Cunha Morales Álvares A, Rigonatto MC, da Silva Costa PH, Tavares AH, de Freitas SM, Nicola AM, Franco OL, Derengowski LD, Schwartz EF, Mortari MR, Bocca AL, Albuquerque P, Silva-Pereira I. Activity of Scorpion Venom-Derived Antifungal Peptides against Planktonic Cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms. Frontiers in microbiology 2016; 7: 1844. [DOI:10.3389/fmicb.2016.01844]
73. Marques-Neto LM, Trentini MM, das Neves RC, Resende DP, Procopio VO, da Costa AC, Kipnis A, Mortari MR, Schwartz EF, Junqueira-Kipnis AP. Antimicrobial and chemotactic activity of scorpion-derived peptide, ToAP2, against mycobacterium massiliensis. Toxins 2018; 10(6): 219. [DOI:10.3390/toxins10060219]
74. Trentini MM, das Neves RC, Santos BP, DaSilva RA, de Souza AC, Mortari MR, Schwartz EF, Kipnis A, Junqueira-Kipnis AP. Non-disulfide-bridge peptide 5.5 from the scorpion Hadrurus gertschi inhibits the growth of Mycobacterium abscessus subsp. massiliense. Frontiers in Microbiology 2017; 8: 273. [DOI:10.3389/fmicb.2017.00273]
75. Corzo G, Escoubas P, Villegas E, Barnham KJ, He W, Norton RS, Nakajima T. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochemical journal 2001; 359(Pt 1): 35-45. [DOI:10.1042/bj3590035]
76. Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, Thevissen K, Tytgat J, Van Eldere J, Van Der Walt J, Verdonck F. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. European journal of biochemistry 2002; 269(19): 4799-4810. [DOI:10.1046/j.1432-1033.2002.03177.x]
77. Dai L, Yasuda A, Naoki H, Corzo G, Andriantsiferana M, Nakajima T. IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. Biochemical and biophysical research communications 2001; 286(4):820-825 [DOI:10.1006/bbrc.2001.5472]
78. Dai L, Corzo G, Naoki H, Andriantsiferana M, Nakajima T. Purification, structure-function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis. Biochemical and biophysical research communications 2002; 293(5): 1514-1522. [DOI:10.1016/S0006-291X(02)00423-0]
79. Remijsen Q, Verdonck F, Willems J. Parabutoporin, a cationic amphipathic peptide from scorpion venom: much more than an antibiotic. Toxicon 2010; 55(2-3): 180-185. [DOI:10.1016/j.toxicon.2009.10.027]
80. Zhao Z, Ma Y, Dai C, Zhao R, Li S, Wu Y, Cao Z, Li W. Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrobial agents and chemotherapy 2009; 53(8): 3472-3477. [DOI:10.1128/AAC.01436-08]
81. Dai C, Ma Y, Zhao Z, Zhao R, Wang Q, Wu Y, Cao Z, Li W. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrobial agents and chemotherapy 2008; 52(11): 3967-3972. [DOI:10.1128/AAC.00542-08]
82. Yan R, Zhao Z, He Y, Wu L, Cai D, Hong W, Wu Y, Cao Z, Zheng C, Li W. A new natural α-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV. Peptides 2011; 32(1): 11-9. [DOI:10.1016/j.peptides.2010.10.008]
83. Hong W, Li T, Song Y, Zhang R, Zeng Z, Han S, Zhang X, Wu Y, Li W, Cao Z. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral research 2014; 102: 1-10. [DOI:10.1016/j.antiviral.2013.11.013]
84. Li Z, Xu X, Meng L, Zhang Q, Cao L, Li W, Wu Y, Cao Z. Hp1404, a new antimicrobial peptide from the scorpion Heterometrus petersii. PloS one 2014; 9(5): e97539. [DOI:10.1371/journal.pone.0097539]
85. Luo X, Ye X, Ding L, Zhu W, Zhao Z, Luo D, Liu N, Sun L, Chen Z. Identification of the scorpion venom-derived antimicrobial peptide Hp1404 as a new antimicrobial agent against carbapenem-resistant Acinetobacter baumannii. Microbial pathogenesis 2021; 157: 104960. [DOI:10.1016/j.micpath.2021.104960]
86. Hong MJ, Kim MK, Park Y. Comparative antimicrobial activity of Hp404 peptide and its analogs against Acinetobacter baumannii. International journal of molecular sciences 2021; 22(11): 5540. [DOI:10.3390/ijms22115540]
87. Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, Park Y.Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Scientific reports 2018; 8(1): 1763. [DOI:10.1038/s41598-018-19434-7]
88. Zeng XC, Wang SX, Zhu Y, Zhu SY, Li WX. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides 2004; 25(2): 143-150. [DOI:10.1016/j.peptides.2003.12.003]
89. Tong-ngam P, Roytrakul S, Sritanaudomchai H. BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis. Asian pacific journal of cancer prevention 2015; 16(7): 2807-2811. [DOI:10.7314/APJCP.2015.16.7.2807]
90. Chen Y, Cao L, Zhong M, Zhang Y, Han C, Li Q, Yang J, Zhou D, Shi W, He B, Liu F, Yu J, Sun Y, Cao Y, Li Y, Li W, Guo D, Cao Z, Yan H. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7. PloS one 2012; 7(4): e34947. [DOI:10.1371/journal.pone.0034947]
91. Almaaytah A, Zhou M, Wang L, Chen T, Walker B, Shaw C. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides 2012; 35(2): 291-299. [DOI:10.1016/j.peptides.2012.03.016]
92. Almaaytah A, Tarazi S, Abu-Alhaijaa A, Altall Y, Alshar'i N, Bodoor K, Al-Balas Q. Enhanced antimicrobial activity of AamAP1-Lysine, a novel synthetic peptide analog derived from the scorpion venom peptide AamAP1. Pharmaceuticals 2014; 7(5): 502-516. [DOI:10.3390/ph7050502]
93. 93Almaaytah A, Abualhaijaa A, Alqudah O. The evaluation of the synergistic antimicrobial and antibiofilm activity of AamAP1-Lysine with conventional antibiotics against representative resistant strains of both Gram-positive and Gram-negative bacteria. Infection and drug resistance 2019; 12: 1371-1380. [DOI:10.2147/IDR.S204626]
94. Almaaytah A, Farajallah A, Abualhaijaa A, Al-Balas Q. A3, a scorpion venom derived peptide analogue with potent antimicrobial and potential antibiofilm activity against clinical isolates of multi-drug resistant gram positive bacteria. Molecules 2018; 23(7): 1603. [DOI:10.3390/molecules23071603]
95. de Jesus Oliveira T, Oliveira UC, da Silva Junior PI. Serrulin: a glycine-rich bioactive peptide from the hemolymph of the yellow tityus serrulatus scorpion. Toxins (Basel) 2019; 11(9): 517. [DOI:10.3390/toxins11090517]
96. Hong W, Zhang R, Di Z, He Y, Zhao Z, Hu J, Wu Y, Li W, Cao Z. Design of histidine-rich peptides with enhanced bioavailability and inhibitory activity against hepatitis C virus. Biomaterials 2013; 34(13): 3511-3522. [DOI:10.1016/j.biomaterials.2013.01.075]
97. Zeng Z, Zhang R, Hong W, Cheng Y, Wang H, Lang Y, Ji Z, Wu Y, Li W, Xie Y, Cao Z. Histidine-rich modification of a scorpion-derived peptide improves bioavailability and inhibitory activity against HSV-1. Theranostics 2018; 8(1): 199-211. [DOI:10.7150/thno.21425]
98. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016; Available at: https://amr-review.org/sites/default/files/160518_Final %20paper_with%20cover.pdf.
99. Hassan M, Kjos M, Nes I, Diep D, Lotfipour F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. Journal of applied microbiology 2012; 113(4): 723-736. [DOI:10.1111/j.1365-2672.2012.05338.x]
100. Chew MF, Poh KS, Poh CL. Peptides as therapeutic agents for dengue virus. International journal of medical sciences 2017; 14(13): 1342-1359. [DOI:10.7150/ijms.21875]
101. Mahendran ASK, Lim YS, Fang CM, Loh HS, Le CF. The potential of antiviral peptides as COVID-19 therapeutics. Frontiers in pharmacology 2020; 11: 575444. [DOI:10.3389/fphar.2020.575444]
102. Mahnam K, Lotfi M, Shapoorabadi FA. Examining the interactions scorpion venom peptides (HP1090, Meucin-13, and Meucin-18) with the receptor binding domain of the coronavirus spike protein to design a mutated therapeutic peptide. Journal of molecular graphics and modelling 2021; 107: 107952. [DOI:10.1016/j.jmgm.2021.107952]
103. Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L, Yang J, Zhang Y, Shi W, Cao Z, Wu Y, Yan H, Li W. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides 2011; 32(7): 1518-1525. [DOI:10.1016/j.peptides.2011.05.015]
104. Koganti R, Yadavalli T, Shukla D. Current and emerging therapies for ocular herpes simplex virus type-1 infections. Microorganisms 2019; 7(10): 429. [DOI:10.3390/microorganisms7100429]
105. Kim SH. Challenge for one health: co-circulation of zoonotic h5n1 and H9N2 avian influenza viruses in Egypt. Viruses 2018; 10(3): 121. [DOI:10.3390/v10030121]
106. Agarwal G, Gabrani R. Antiviral peptides: identification and validation. International journal of peptide research and therapeutics 2021; 27(1): 149-168. [DOI:10.1007/s10989-020-10072-0]
107. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer. Lyon. France, 2020. Available at: https://gco.iarc.fr/today
108. Mishal R, Tahir HM, Zafar K, Arshad M. Anti-cancerous applications of scorpion venom. International journal of biological and pharmaceutical sciences 2013; 4(5): 356-360.
109. Srairi-Abid N, Othman H, Aissaoui D, BenAissa R. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell calcium 2019; 80: 160-174. [DOI:10.1016/j.ceca.2019.05.003]
110. Litan A, Langhans SA. Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Frontiers in cellular neuroscience 2015; 9: 86. [DOI:10.3389/fncel.2015.00086]
111. Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiological reviews 2018; 98(2): 559-621. [DOI:10.1152/physrev.00044.2016]
112. Heinen TE, da Veiga ABG. Arthropod venoms and cancer. Toxicon 2011; 57(4): 497-511. [DOI:10.1016/j.toxicon.2011.01.002]
113. Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. The journal of biological chemistry 2003; 278(6): 4135-4144. [DOI:10.1074/jbc.M205662200]
114. Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E, De Waard M. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins 2015; 7(4): 1079-1101. [DOI:10.3390/toxins7041079]
115. Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, Ravanpay AC, Stroud MR, Kusuma Y, Hansen SJ, Kwok D, Munoz NM, Sze RW, Grady WM, Greenberg NM, Ellenbogen RG, Olson JM. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer research 2007; 67(14): 6882-6888. [DOI:10.1158/0008-5472.CAN-06-3948]
116. Qin C, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X, Wang G, Yin L, Zhang Q. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. Molecular pharmaceutics 2014; 11(10): 3233-3241 [DOI:10.1021/mp400691z]
117. McGonigle S, Majumder U, Kolber-Simonds D, Wu J, Hart A, Noland T, TenDyke K, Custar D, Li D, Du H, Postema MHD, Lai WG, Twine NC, Woodall-Jappe M, Nomoto K. Neuropilin-1 drives tumor-specific uptake of chlorotoxin. Cell communication and signaling 2019; 17(1): 67. [DOI:10.1186/s12964-019-0368-9]
118. Baradaran M, Jalali A, Soorki MN, Jokar M, Galehdari H. Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and steered molecular dynamics simulations. Iranian journal of pharmaceutical research 2019; 18(2): 720-734.
119. Satitmanwiwat S, Changsangfa C, Khanuengthong A, Promthep K, Roytrakul S, Arpornsuwan T, Saikhun K, Sritanaudomchai H.The scorpion venom peptide BmKn2 induces apoptosis in cancerous but not in normal human oral cells. Biomedicine and pharmacotherapy 2016; 84: 1042-1050. [DOI:10.1016/j.biopha.2016.10.041]
120. Wang WX, Ji YH. Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro. Journal of neuro-oncology 2005; 73(1): 1-7. [DOI:10.1007/s11060-004-4205-6]
121. Kampo S, Ahmmed B, Zhou T, Owusu L, Anabah TW, Doudou NR, Kuugbee ED, Cui Y, Lu Z, Yan Q, Wen QP. Scorpion venom analgesic peptide, BmK AGAP Inhibits stemness, and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Frontiers in oncology 2019; 9: 21. [DOI:10.3389/fonc.2019.00021]
122. Díaz-García A, Ruiz-Fuentes JL, Rodríguez-Sánchez H, Fraga Castro JA. Rhopalurus junceus scorpion venom induces apoptosis in the triple negative human breast cancer cell line MDA-MB-231. Journal of venom research 2017; 8: 9-13.
123. Das Gupta S, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni JR, Gomes A, Gomes A. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leukemia research 2007; 31(6): 817-825. [DOI:10.1016/j.leukres.2006.06.004]
124. Gupta SD, Gomes A, Debnath A, Saha A, Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chemico-biological interactions 2010; 183(2): 293-303. [DOI:10.1016/j.cbi.2009.11.006]
125. Das Gupta S, Halder B, Gomes A, Gomes A. Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells. Life sciences 2013; 93(7): 271-276. [DOI:10.1016/j.lfs.2013.06.022]
126. Bernardes-Oliveira E, Farias KJS, Gomes DL, Araújo JMGd, Silva WDd, Rocha HAO, et al. Tityus serrulatus scorpion venom induces apoptosis in cervical cancer cell lines. Evidence-Based complementary and aternative medicine 2019; 2019: 5131042. [DOI:10.1155/2019/5131042]
127. Daniele-Silva A, Machado RJ, Monteiro NK, Estrela AB, Santos EC, Carvalho E, Araújo Júnior RF, Melo-Silveira RF, Rocha HA, Silva-Júnior AA, Fernandes-Pedrosa MF. Stigmurin and TsAP-2 from Tityus stigmurus scorpion venom: assessment of structure and therapeutic potential in experimental sepsis. Toxicon 2016; 121: 10-21. [DOI:10.1016/j.toxicon.2016.08.016]
128. D'Suze G, Rosales A, Salazar V, Sevcik C. Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon 2010; 56(8): 1497-1505. [DOI:10.1016/j.toxicon.2010.09.008]
129. Jang SH, Choi SY, Ryu PD, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. European journal of pharmacology 2011; 651(1-3): 26-32. [DOI:10.1016/j.ejphar.2010.10.066]
130. Almaaytah A, Tarazi S, Mhaidat N, Al-Balas Q, Mukattash TL. Mauriporin, a novel cationic α-helical peptide with selective cytotoxic activity against prostate cancer cell lines from the venom of the scorpion Androctonus mauritanicus. International journal of peptide research and therapeutics 2013; 19: 281-293. [DOI:10.1007/s10989-013-9350-3]
131. Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicology in vitro 2011; 25(8): 1748-1756. [DOI:10.1016/j.tiv.2011.09.002]
132. Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan HA. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Molecular and cellular biochemistry 2011; 348(1-2): 173-181. [DOI:10.1007/s11010-010-0652-x]
133. Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. British journal of pharmacology 2018; 175(12): 2138-2157. [DOI:10.1111/bph.13962]
134. Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways. Journal of neurobiology 2004; 61(1): 55-71. [DOI:10.1002/neu.20094]
135. Li Z, Hu P, Wu W, Wang Y. Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch. Peptides 2019; 115: 43-50. [DOI:10.1016/j.peptides.2019.02.009]
136. Liu ZR, Tao J, Dong BQ, Ding G, Cheng ZJ, He HQ, et al. Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neuroscience bulletin 2012; 28(3): 209-221. [DOI:10.1007/s12264-012-1234-6]
137. Zhang Y, Xu J, Wang Z, Zhang X, Liang X, Civelli O. Bm K-YA, an enkephalin-like peptide in scorpion venom. PloS one 2012; 7(7): e40417. [DOI:10.1371/journal.pone.0040417]
138. Cao ZY, Mi ZM, Cheng GF, Shen WQ, Xiao X, Liu XM, Liang XT, Yu DQ. Purification and characterization of a new peptide with analgesic effect from the scorpion Buthus martensi Karch. Journal of peptide 2004; 64(1): 33-41. [DOI:10.1111/j.1399-3011.2004.00164.x]
139. Ruan JP, Mao QH, Lu WG, Cai XT, Chen J, Li Q, Fu Q, Yan HJ, Cao JL, Cao P.Inhibition of spinal MAPKs by scorpion venom peptide BmK AGAP produces a sensory-specific analgesic effect. Molecular pain 2018; 14: 1744806918761238. [DOI:10.1177/1744806918761238]
140. Zhao F, Wang JL, Ming HY, Zhang YN, Dun YQ, Zhang JH, Song YB. Insights into the binding mode and functional components of the analgesic-antitumour peptide from Buthus martensii Karsch to human voltage-gated sodium channel 1.7 based on dynamic simulation analysis. Journal of biomolecular structure and dynamics 2020; 38(6): 1868-1879. [DOI:10.1080/07391102.2019.1620126]
141. Song Y, Liu Z, Zhang Q, Li C, Jin W, Liu L, Zhang J, Zhang J.Investigation of binding modes and functional surface of scorpion toxins ANEP to sodium channels 1.7. Toxins 2017; 9(12): 387. [DOI:10.3390/toxins9120387]
142. Wang Y, Wang L, Cui Y, Song YB, Liu YF, Zhang R, Wu CF, Zhang JH. Purification, characterization and functional expression of a new peptide with an analgesic effect from Chinese scorpion Buthus martensii Karsch (BmK AGP‐SYPU1). Biomedical chromatography 2011; 25(7): 801-807. [DOI:10.1002/bmc.1519]
143. Zhang R, Yang Z, Liu YF, Cui Y, Zhang JH. Purification, characterization and cDNA cloning of an analgesic peptide from the Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2). Molekuliarnaia biologiia 2011; 45(6): 956-962. [DOI:10.1134/S0026893311060203]
144. Wang Y, Song YB, Yang GZ, Cui Y, Zhao YS, Liu YF, Ma Y, Wu CF, Zhang JH. Arginine residues in the C-terminal and their relationship with the analgesic activity of the toxin from the Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU1). Applied biochemistry and biotechnology 2012; 168(2): 247-255. [DOI:10.1007/s12010-012-9768-7]
145. Zhang R, Cui Y, Zhang X, Yang Z, Zhao Y, Song Y, Wu C, Zhang J. Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2. BMB reports 2010; 43(12): 801-806. [DOI:10.5483/BMBRep.2010.43.12.801]
146. Yang F, Liu S, Zhang Y, Qin C, Xu L, Li W, Cao Z, Li W, Wu Y. Expression of recombinant α-toxin BmKM9 from scorpion Buthus martensii Karsch and its functional characterization on sodium channels. Peptides 2018; 99: 153-160. [DOI:10.1016/j.peptides.2017.09.017]
147. Wang Y, Hao Z, Shao J, Song Y, Li C, Li C, Zhao Y, Liu Y, Wei T, Wu C, Zhang J. The role of Ser54 in the antinociceptive activity of BmK9, a neurotoxin from the scorpion Buthus martensii Karsch. Toxicon 2011; 58(6-7): 527-532. [DOI:10.1016/j.toxicon.2011.08.014]
148. Alami M, Vacher H, Bosmans F, Devaux C, Rosso JP, Bougis PE, Tytgat J, Darbon H, Martin-Eauclaire MF. Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochemical journal 2003; 375(pt 3): 551-560. [DOI:10.1042/bj20030688]
149. Rigo FK, Bochi GV, Pereira AL, Adamante G, Ferro PR, Dal-Toé De Prá S, Milioli AM, Damiani AP, da Silveira Prestes G, Dalenogare DP, Chávez-Olórtegui C, Moraes de Andrade V, Machado-de-Ávila RA, Trevisan G. TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice. European journal of pharmacology 2019; 855: 65-74. [DOI:10.1016/j.ejphar.2019.05.002]
150. Hoang AN, Vo HD, Vo NP, Kudryashova KS, Nekrasova OV, Feofanov AV, Kirpichnikov MP, Andreeva TV, Serebryakova MV, Tsetlin VI, Utkin YN. Vietnamese heterometrus laoticus scorpion venom: evidence for analgesic and anti-inflammatory activity and isolation of new polypeptide toxin acting on Kv1.3 potassium channel. Toxicon 2014; 77: 40-48. [DOI:10.1016/j.toxicon.2013.10.027]
151. Bagheri-Ziari S, Shahbazzadeh D, Sardari S, Sabatier J-M, Pooshang Bagheri K. Discovery of a New Analgesic Peptide, Leptucin, from the Iranian Scorpion, Hemiscorpius lepturus. Molecules 2021; 26(9): 2580. [DOI:10.3390/molecules26092580]
152. Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A. The kinin system-bradykinin: biological effects and clinical implications. multiple role of the kinin system-bradykinin. Hippokratia 2007; 11(3): 124-128.
153. Rocha ESM, Beraldo WT, Rosenfeld G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. The American journal of physiology 1949; 156(2): 261-273. [DOI:10.1152/ajplegacy.1949.156.2.261]
154. Ferreira S. A bradykinin‐potentiating factor (BPF) present in the venom of Bothrops jararaca. British journal of pharmacology and chemotherapy 1965; 24(1): 163-169. [DOI:10.1111/j.1476-5381.1965.tb02091.x]
155. Camargo AC, Ianzer D, Guerreiro JR, Serrano SM. Bradykinin-potentiating peptides: beyond captopril. Toxicon 2012; 59(4): 516-523. [DOI:10.1016/j.toxicon.2011.07.013]
156. Ferreira L, Alves E, Henriques O. Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. Toxicon 1993; 31(8): 941-947. [DOI:10.1016/0041-0101(93)90253-F]
157. Meki AR, Nassar AY, Rochat H. A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus. Peptides 1995; 16(8): 1359-1365. [DOI:10.1016/0196-9781(95)02036-5]
158. Machado RJ, Junior LG, Monteiro NK, Silva-Júnior AA, Portaro FC, Barbosa EG, Braga VA, Fernandes-Pedrosa MF. Homology modeling, vasorelaxant and bradykinin-potentiating activities of a novel hypotensin found in the scorpion venom from Tityus stigmurus. Toxicon 2015; 101: 11-18. [DOI:10.1016/j.toxicon.2015.04.003]
159. Verano-Braga T, Figueiredo-Rezende F, Melo MN, Lautner RQ, Gomes ER, Mata-Machado LT, Murari A, Rocha-Resende C, Elena de Lima M, Guatimosim S, Santos RA, Pimenta AM. Structure-function studies of Tityus serrulatus Hypotensin-I (TsHpt-I): A new agonist of B(2) kinin receptor. Toxicon 2010; 56(7): 1162-1171. [DOI:10.1016/j.toxicon.2010.04.006]
160. . Anangi R, Koshy S, Huq R, Beeton C, Chuang WJ, King GF. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers. PloS one 2012; 7(12): e52965. [DOI:10.1371/journal.pone.0052965]
161. Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S, Darbon H, De Waard M, Sabatier JM. K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochemical journal 2005; 385(pt 1): 95-104. [DOI:10.1042/BJ20041379]
162. Romi-Lebrun R, Lebrun B, Martin-Eauclaire MF, Ishiguro M, Escoubas P, Wu FQ, Hisada M, Pongs O, Nakajima T. Purification, characterization, and synthesis of three novel toxins from the Chinese scorpion Buthus martensi, which act on K+ channels. Biochemistry 1997; 36(44): 13473-13482. [DOI:10.1021/bi971044w]
163. Han S, Yi H, Yin SJ, Chen ZY, Liu H, Cao ZJ, Wu YL, Li WX. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. The Journal of biological chemistry 2008; 283(27): 19058-19065. [DOI:10.1074/jbc.M802054200]
164. Tanner MR, Tajhya RB, Huq R, Gehrmann EJ, Rodarte KE, Atik MA, et al. Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog. Clinical immunology (Orlando, Fla) 2017; 180: 45-57. [DOI:10.1016/j.clim.2017.03.014]
165. Pucca MB, Bertolini TB, Cerni FA, Bordon KC, Peigneur S, Tytgat J, Bonato VL, Arantes EC. Immunosuppressive evidence of Tityus serrulatus toxins Ts6 and Ts15: insights of a novel K(+) channel pattern in T cells. Immunology 2016; 147(2): 240-250. [DOI:10.1111/imm.12559]
166. Xiao M, Ding L, Yang W, Chai L, Sun Y, Yang X, Li D, Zhang H, Li W, Cao Z, Wu Y, Li J, Li S, Chen Z. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon 2017; 127: 37-43. [DOI:10.1016/j.toxicon.2017.01.005]
167. Zhang R, Yang Z, Liu Y, Cui Y, Zhang J. Purification, characterization and cDNA cloning of an analgesic peptide from the chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2). Molecular biology 2011; 45(6): 879-885. [DOI:10.1134/S0026893311060203]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb