Volume 27, Issue 6 (11-2023)                   IBJ 2023, 27(6): 340-348 | Back to browse issues page

PMID: 37950395


XML Print


Abstract:  
Background: The aim of the present study was to evaluate alterations in the vegf gene expression as an angiogenic factor in mouse embryo fibroblasts seeded on the decellularized liver fragments.
Methods: Liver tissue samples (n = 10) collected from adult male mice were randomly divided into decellularized and native control groups. Tissues were decellularized by treating with 1% Triton X-100 and 0.1% SDS for 24 hours and assessed by H&E staining and scanning electron microscopy (SEM). Then DNA content analysis and toxicity tests were performed. By centrifugation, DiI-labeled mouse embryo fibroblasts were seeded on each scaffold and cultured for one week. The recellularized scaffolds were studied by H&E staining, SEM, and laser scanning confocal microscopy (LSCM). After RNA extraction and cDNA synthesis, the expression of the vegf gene in these samples was investigated using real-time RT-PCR.
Results: Our observations showed that the decellularized tissues had morphology and porous structure similar to the control group, and their DNA content significantly reduced (p < 0.05) and reached to 4.12% of the control group. The MTT test indicated no significant cellular toxicity for the decellularized scaffolds. Light microscopy, SEM, and LSCM observations confirmed the attachment and penetration of embryonic fibroblast cells on the surface and into different depths of the scaffolds. There was no statistically significant difference in terms of vegf gene expression in the cultured cells in the presence and absence of a scaffold.
Conclusion: The reconstructed scaffold had no effect on vegf gene expression. Decellularized mouse liver tissue recellularized by embryonic fibroblasts could have an application in regenerative medicine.

References
1. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioactive materials 2022; 10: 15-31. [DOI:10.1016/j.bioactmat.2021.09.014]
2. Neishabouri A, Khaboushan AS, Daghigh F, Kajbafzadeh AB, Zolbin MS. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Frontiers in bioengineering and biotechnology 2022; 10: 805299. [DOI:10.3389/fbioe.2022.805299]
3. Rossi EA, Quintanilha LF, Nonaka CKV, Souza BSF. Advances in hepatic tissue bioengineering with decellularized liver bioscaffold. Stem cells international 2019; 2019: 2693189. [DOI:10.1155/2019/2693189]
4. Mazza G, Al‐Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatology communications 2018; 2(2): 131-141. [DOI:10.1002/hep4.1136]
5. 5. Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, Cho DW. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules 2017; 18(4): 1229-1237. [DOI:10.1021/acs.biomac.6b01908]
6. Agarwal T, Narayan R, Maji S, Ghosh S. K, Maiti T K. Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. Journal of tissue engineering and regenerative medicine 2018; 12(3): e1678-e1690. [DOI:10.1002/term.2594]
7. Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK. Use of decellularized porcine liver for engineering humanized liver organ. Journal of surgical research 2012; 173(1): e11-e25. [DOI:10.1016/j.jss.2011.09.033]
8. Mattei G, Magliaro C, Pirone A, Ahluwalia A. Decellularized human liver is too heterogeneous for designing a generic extracellular matrix mimic hepatic scaffold. Artificial organs 2017; 41(12): E347-E355. [DOI:10.1111/aor.12925]
9. Nemets E, Kirsanova L, Basok Ju B, Lymareva M, Ju SM. Decellularized human liver tissue fragments to create cell-and tissue-engineered liver constructs. Current trends in biomedical engineering and biosciences 2017; 8(5): 112-115. [DOI:10.19080/CTBEB.2017.08.555747]
10. Jaramillo M, Yeh H, Yarmush ML, Uygun BE. Decellularized human liver extracellular matrix (hDLM)‐mediated hepatic differentiation of human induced pluripotent stem. Journal of tissue engineering and regenerative medicine 2018; 12(4): e1962-e1973. [DOI:10.1002/term.2627]
11. Panahi F, Baheiraei N, Sistani MN, Salehnia M. Analysis of decellularized mouse liver fragment and its recellularization with human endometrial mesenchymal cells as a candidate for clinical usage. Progress in biomaterials 2022; 11(4): 409-420. [DOI:10.1007/s40204-022-00203-9]
12. Baiocchini A, Montaldo C, Conigliaro A, Grimaldi A, Correani V, Mura F, Ciccosanti F, Rotiroti N, Brenna A, Montalbano M, D'Offizi G, Capobianchi MR, Alessandro R, Piacentini M, Schininà ME, Maras B, Del Nonno F, Tripodi M, Mancone C. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One 2016; 11(3): e0151736. [DOI:10.1371/journal.pone.0151736]
13. Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011; 32(29): 7042-7052. [DOI:10.1016/j.biomaterials.2011.06.005]
14. Zhao C, Li Y, Peng G, Lei X, Zhang G, Gao Y. Decellularized liver matrix-modified chitosan fibrous scaffold as a substrate for C3A hepatocyte culture. Journal of biomaterials science, polymer edition 2020; 31(8): 1041-1056. [DOI:10.1080/09205063.2020.1738690]
15. Damania A, Kumar A, Teotia AK, Kimura H, Kamihira M, Ijima H, Sarin SK, Kumar A. Decellularized liver matrix-modified cryogel scaffolds as potential hepatocyte carriers in bioartificial liver support systems and implantable liver constructs. Acs applied materials and interfaces 2018; 10(1): 114-126. [DOI:10.1021/acsami.7b13727]
16. Willemse J, van der Laan LJW, de Jonge J, Verstegen MMA. Design by nature: emerging applications of native liver extracellular matrix for cholangiocyte organoid-based regenerative medicine. Bioengineering 2022; 9(3): 110. [DOI:10.3390/bioengineering9030110]
17. Grant R, Hallett J, Forbes S, Hay D, Callanan A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Science reports 2019; 9: 6293. [DOI:10.1038/s41598-019-42627-7]
18. Ahmed E, Saleh T, Xu M. Recellularization of native tissue derived acellular scaffolds with mesenchymal stem cells. Cells 2021; 10(7): 1787. [DOI:10.3390/cells10071787]
19. Toprakhisar B, Verfaillie CM , Kumar M. Advances in recellularization of decellularized liver grafts with different liver (stem) cells: towards clinical applications. Cells. 2023 13; 12(2):301. [DOI:10.3390/cells12020301]
20. Jahani M, Rezazadeh D, Mohammadi P, Abdolmaleki A, Norooznezhad A, Mansouri K. Regenerative medicine and angiogenesis; challenges and opportunities. Advanced pharmaceutical bulletin 2020; 10(4): 490-501. [DOI:10.34172/apb.2020.061]
21. Kübler M, Beck S, Fischer S, Götz P, Kumaraswami K, Ishikawa-Ankerhold H, Lasch M, Deindl E. Absence of cold-inducible rna-binding protein (cirp) promotes angiogenesis and regeneration of ischemic tissue by inducing m2-like macrophage polarization. Biomedicines 2021; 9(4): 395. [DOI:10.3390/biomedicines9040395]
22. 2Kubota S, Takigawa M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 2007; 10(1): 1-11. [DOI:10.1007/s10456-006-9058-5]
23. Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Advances in Nutrition 2021; 12(6): 2415-2434. [DOI:10.1093/advances/nmab070]
24. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacological reviews 2004; 56(4): 549-580. [DOI:10.1124/pr.56.4.3]
25. Guo X, Yi H, Li T, Wang Y, Wang H, Chen X. Role of vascular endothelial growth factor (vegf) in human embryo implantation: clinical implications. Biomolecules 2021; 11(2): 253. [DOI:10.3390/biom11020253]
26. Andraweera PH, Dekker GA, Laurence JA, Roberts CT. Placental expression of VEGF family mRNA in adverse pregnancy outcomes. Placenta 2012; 33(3): 467-472. [DOI:10.1016/j.placenta.2012.02.013]
27. Bozkurt AS. Publication status of mouse embryonic fibroblast cells in scientific journals. European journal of therapeutics 2021; 27: 135-141. [DOI:10.5152/eurjther.2021.20111]
28. Haghshenas M, Hoveizi E, Mohammadi T, Kazemi Nezhad SR. In vitro evaluation of the biocompatibility and stability of fluorescent dil dye on mouse embryonic fibroblast cells. Gene, cell tissue 2019; 6(1): e85521. [DOI:10.5812/gct.85521]
29. Hosseini V, Kalantary-Charvadeh A, Hasegawa K, Nazari Soltan Ahmad S, Rahbarghazi R, Mahdizadeh A, Darabi M, Totonchi M. A mechanical non-enzymatic method for isolation of mouse embryonic fibroblasts. Molecular biology reports 2020; 47: 8881-8890. [DOI:10.1007/s11033-020-05940-3]
30. Zhao W, Shupe TD, Soker S, Yoo JJ, Atala A. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials 2015; 40: 72-79. [DOI:10.1016/j.biomaterials.2014.11.027]
31. Zhou p, huang y, Guo Y, Wang L, Ling C, Guo Q, Wang Y, Zhu S, Fan X, Zhu M, Huang H, Lu Y, Wang Z. Decellularization and recellularization of rat livers with hepatocytes and endothelial progenitor cells. Artificial organs 2016; 40(3): E25-E38. [DOI:10.1111/aor.12645]
32. Zhou Q, Li L, Li J. Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver international 2015; 35(3): 687-694. [DOI:10.1111/liv.12581]
33. Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. International journal of molecular sciences 2020; 21(15): 5447. [DOI:10.3390/ijms21155447]
34. He M, Callanan A, Lagaras K, Steele JA, Stevens MM. Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys. Journal of biomedical materials research part b: applied biomaterials 2017; 105(6): 1352-1360. [DOI:10.1002/jbm.b.33668]
35. Jeong W, Kim MK, Kang H-W. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks. Journal of tissue engineering 2021; 12: 204173142199709. [DOI:10.1177/2041731421997091]
36. Zhang X, Dong J. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochemical and biophysical research communications 2015; 456(4): 938-44. [DOI:10.1016/j.bbrc.2014.11.004]
37. Janiszewska M, Primi MC, Izard T. Cell adhesion in cancer: Beyond the migration of single cells. Journal of biological chemistry 2020; 295: 2495-2505. [DOI:10.1074/jbc.REV119.007759]
38. Alexanian RA, Mahapatra K, Lang D, Vaidyanathan R, Markandeya YS, Gill RK, Zhai AJ, Dhillon A, Lea MR, Abozeid S, Schmuck EG, Raval AN, Eckhardt LL, Glukhov AV, Lalit PA, Kamp TJ. Induced cardiac progenitor cells repopulate decellularized mouse heart scaffolds and differentiate to generate cardiac tissue. Biochimica et biophysica acta molecular cell research 2020; 1867: 118559. [DOI:10.1016/j.bbamcr.2019.118559]
39. Barreto RS, Romagnolli P, Fratini P, Mess AM, Miglino MA. Mouse placental scaffolds: a three-dimensional environment model for recellularization. Journal of tissue engineering 2019; 10: 2041731419867962. [DOI:10.1177/2041731419867962]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.