Volume 27, Issue 5 (9-2023)                   IBJ 2023, 27(5): 294-306 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Forooghi Pordanjani T, Dabirmanesh B, Choopanian P, Mirzaie M, Mohebbi* S, Khajeh K. Extracting Potential New Targets for Treatment of Adenoid Cystic Carcinoma using Bioinformatic Methods. IBJ 2023; 27 (5) :294-306
URL: http://ibj.pasteur.ac.ir/article-1-3830-en.html
Background: Adenoid cystic carcinoma is a slow-growing malignancy that most often occurs in the salivary glands. Currently, no FDA-approved therapeutic target or diagnostic biomarker has been identified for this cancer. The aim of this study was to find new therapeutic and diagnostic targets using bioinformatics methods.
Methods: We extracted the gene expression information from two GEO datasets (including GSE59701 and GSE88804). Different expression genes between adenoid cystic carcinoma (ACC) and normal samples were extracted using R software. The biochemical pathways involved in ACC were obtained by using the Enrichr database. PPI network was drawn by STRING, and important genes were extracted by Cytoscape. Real-time PCR and immunohistochemistry were used for biomarker verification.
Results: After analyzing the PPI network, 20 hub genes were introduced to have potential as diagnostic and therapeutic targets. Among these genes, PLCG1 was presented as new biomarker in ACC. Furthermore, by studying the function of the hub genes in the enriched biochemical pathways, we found that insulin-like growth factor type 1 receptor and PPARG pathways most likely play a critical role in tumorigenesis and drug resistance in ACC and have a high potential for selection as therapeutic targets in future studies.
Conclusion: In this study, we achieved the recognition of the pathways involving in ACC pathogenesis and also found potential targets for treatment and diagnosis of ACC. Further experimental studies are required to confirm the results of this study.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

1. Brill LB 2nd, Kanner WA, Fehr A, Andrén Y, Moskaluk CA, Löning T, Stenman G, Frierson HF Jr. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Modern pathology 2011; 24(9): 1169-1176. [DOI:10.1038/modpathol.2011.86]
2. Andersson MK, Åman P, Stenman G. IGF2/IGF1R signaling as a therapeutic target in MYB-positive adenoid cystic carcinomas and other fusion gene-driven tumors. Cells 2019; 8(8): 913. [DOI:10.3390/cells8080913]
3. Andreasen S. Molecular features of adenoid cystic carcinoma with an emphasis on microRNA expression. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 2018; 126(Suppl 140): 7-57. [DOI:10.1111/apm.12828]
4. Cantù G. Adenoid cystic carcinoma. An indolent but aggressive tumour. Part A: from aetiopathogenesis to diagnosis. Acta otorhinolaryngologica Italica 2021; 41(3): 206-214. [DOI:10.14639/0392-100X-N1379]
5. Andersson MK, Afshari MK, Andrén Y, Wick MJ, Stenman G. Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling. Journal of the national cancer institute 2017; 109(9): doi: 10.1093/jnci/djx017. [DOI:10.1093/jnci/djx017]
6. Mitani Y, Rao PH, Futreal PA, Roberts DB, Stephens PJ, Zhao YJ, Zhang L, Mitani M, Weber RS, Lippman SM, Caulin C, El-Naggar AK. Novel chromosomal rearrangements and break points at the t (6; 9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome. Clinical cancer research 2011; 17(22):7003-7014. [DOI:10.1158/1078-0432.CCR-11-1870]
7. Ferrarotto R, Heymach JV, Glisson BS. MYB-fusions and other potential actionable targets in adenoid cystic carcinoma. Current opinion in oncology 2016; 28(3): 195-200. [DOI:10.1097/CCO.0000000000000280]
8. Liu X, Xu Y, Han L, Yi Y. Reassessing the potential of Myb-targeted anti-cancer therapy. Journal of cancer 2018; 9(7): 1259-1266. [DOI:10.7150/jca.23992]
9. Mitani Y, Li J, Rao PH, Zhao YJ, Bell D, Lippman SM, Weber RS, Caulin C, El-Naggar AK. Comprehensive analysis of the MYB-NFIB gene fusion in salivary adenoid cystic carcinoma: Incidence, variability, and clinicopathologic significance. Clinical cancer research 2010; 16(19): 4722-4731. [DOI:10.1158/1078-0432.CCR-10-0463]
10. Gao R, Cao C, Zhang M, Lopez MC, Yan Y, Chen Z, Mitani Y, Zhang L, Zajac-Kaye M, Liu B, Wu L, Renne R, Baker HV, El-Naggar A, Kaye FJ. A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets. Oncotarget. 2014; 5(24): 12528-12542. [DOI:10.18632/oncotarget.2985]
11. Liu HB, Huang GJ, Luo MS. Transcriptome analyses identify hub genes and potential mechanisms in adenoid cystic carcinoma. Medicine (Baltimore) 2020; 99(2): e18676. [DOI:10.1097/MD.0000000000018676]
12. Yan P, He Y, Xie K, Kong S, Zhao W. In silico analyses for potential key genes associated with gastric cancer. PeerJ 2018; 6: e6092. [DOI:10.7717/peerj.6092]
13. Xu T, Dong M, Li H, Zhang R, Li X. Elevated mRNA expression levels of DLGAP5 are associated with poor prognosis in breast cancer. Oncology letters 2020; 19(6): 4053-4065 [DOI:10.3892/ol.2020.11533]
14. Zhang S, Yan L, Cui C, Wang Z, Wu J, Zhao M, Dong B, Guan X, Tian X, Hao C. Identification of TYMS as a promoting factor of retroperitoneal liposarcoma progression: Bioinformatics analysis and biological evidence. Oncology reports 2020; 44(2): 565-576. [DOI:10.3892/or.2020.7635]
15. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research. 2016; 44(W1): W90-W97. [DOI:10.1093/nar/gkw377]
16. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic acids research 2019; 47(D1): D607-D613. [DOI:10.1093/nar/gky1131]
17. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 2003; 13(11): 2498-2504. [DOI:10.1101/gr.1239303]
18. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC systems biology 2014; 8(Suppl 4): S11. [DOI:10.1186/1752-0509-8-S4-S11]
19. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12: 77. [DOI:10.1186/1471-2105-12-77]
20. Ferrarotto R, Mitani Y, Diao L, Guijarro I, Wang J, Zweidler-McKay P, Bell D, William WN Jr, Glisson BS, Wick MJ, Kapoun AM, Patnaik A, Eckhardt G, Munster P, Faoro L, Dupont J, Lee JJ, Futreal A, El-Naggar AK, Heymach JV. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. Journal of clinical oncology 2017; 35(3): 352-360. [DOI:10.1200/JCO.2016.67.5264]
21. Zielinski R, Przytycki PF, Zheng J, Zhang D, Przytycka TM, Capala J. The crosstalk between EGF, IGF, and Insulin cell signaling pathways--computational and experimental analysis. BMC systems biology 2009; 3: 88. [DOI:10.1186/1752-0509-3-88]
22. Park S, Vora M, van Zante A, Humtsoe J, Kim HS, Yom S, Agarwal S, Ha P. Clinicopathologic implications of Myb and Beta-catenin expression in adenoid cystic carcinoma. Journal of otolaryngology 2020; 49(1): 48. [DOI:10.1186/s40463-020-00446-1]
23. Tang Y, Liang X, Zheng M, Zhu Z, Zhu G, Yang J, Chen Y. Expression of c-kit and Slug correlates with invasion and metastasis of salivary adenoid cystic carcinoma. Oral oncology 2010; 46(4): 311-316. [DOI:10.1016/j.oraloncology.2010.02.001]
24. Li Q, Huang P, Zheng C, Wang J, Ge M. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis. Oncotarget 2017; 8(17): 29458-29473 [DOI:10.18632/oncotarget.15297]
25. Cavalcante RB, Nonaka CFW, Santos HBP, Rabenhorst SHB, Pereira Pinto L, de Souza LB. Assessment of CTNNB1 gene mutations and β-catenin immunoexpression in salivary gland pleomorphic adenomas and adenoid cystic carcinomas. Virchows Archiv : an international journal of pathology 2018; 472(6): 999-1005. [DOI:10.1007/s00428-018-2335-z]
26. Emmanouilidi A, Lattanzio R, Sala G, Piantelli M, Falasca M. The role of phospholipase Cγ1 in breast cancer and its clinical significance. Future oncology 2017; 13(22): 1991-1997. [DOI:10.2217/fon-2017-0125]
27. Lu X, Fu H, Chen R, Wang Y, Zhan Y, Song G, Hu T, Xia C, Tian X, Zhang B. Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro. International journal of biological sciences 2020; 16(8): 1427-1440. [DOI:10.7150/ijbs.42962]
28. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, Liu F, Gao C, Huang XP, Kuznetsova E, Rougie M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown PJ, Frye SV, Arrowsmith CH, Hahn KM, Wang GG, Vedadi M, Jin J. An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. ACS chemical biology 2013; 8(6): 1324-34. [DOI:10.1021/cb400133j]
29. Li J, Hart RP, Mallimo EM, Swerdel MR, Kusnecov AW, Herrup K. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nature neuroscience 2013; 16(12): 1745-1753. [DOI:10.1038/nn.3564]
30. Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Molecular and cellular biology 2007; 27(14): 5105-5119 [DOI:10.1128/MCB.00162-07]
31. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. Journal of hematology and oncology 2020; 13(1): 104. [DOI:10.1186/s13045-020-00937-8]
32. Drier Y, Cotton MJ, Williamson KE, Gillespie SM, Ryan RJ, Kluk MJ, Carey CD, Rodig SJ, Sholl LM, Afrogheh AH, Faquin WC, Queimado L, Qi J, Wick MJ, El-Naggar AK, Bradner JE, Moskaluk CA, Aster JC, Knoechel B, Bernstein BE. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nature genetics 2016; 48(3): 265-272. [DOI:10.1038/ng.3502]
33. Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-like growth factor (igf) pathway targeting in cancer: role of the igf axis and opportunities for future combination studies. Targeted oncology 2017; 12(5): 571-597. [DOI:10.1007/s11523-017-0514-5]
34. Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, Ye J, Wei Q, Wang J, Zhao L, Luu HH. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes and diseases 2015; 2(1): 13-25. [DOI:10.1016/j.gendis.2014.10.004]
35. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. Journal of molecular endocrinology 2011; 47(1): R1-R10. [DOI:10.1530/JME-11-0022]
36. Denley A, Wallace JC, Cosgrove LJ, Forbes BE. The insulin receptor isoform exon 11- (IR-A) in cancer and other diseases: a review. Hormone and metabolic research 2003; 35(11-12): 778-785. [DOI:10.1055/s-2004-814157]
37. Vella V, Milluzzo A, Scalisi NM, Vigneri P, Sciacca L. Insulin Receptor Isoforms in Cancer. International journal of molecular sciences 2018; 19(11): 3615. [DOI:10.3390/ijms19113615]
38. Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8(10): 1207. [DOI:10.3390/cells8101207]
39. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature reviews.cancer 2012; 12(3): 159-169. [DOI:10.1038/nrc3215]
40. Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M, Blakey DC, Tabrizi M, Jallal B, Trail PA, Coats S, Bosslet K, Chang YS. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer research 2011; 71(3): 1029-1040. [DOI:10.1158/0008-5472.CAN-10-2274]
41. Alfares MN, Perks CM, Hamilton-Shield JP, Holly JMP. Insulin-like growth factor-II in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity. American journal of physiology. Endocrinology and metabolism 2018; 315(6): E1098-E1107. [DOI:10.1152/ajpendo.00409.2017]
42. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica et biophysica acta 2013; 1831(10): 1533-1541. [DOI:10.1016/j.bbalip.2013.02.010]
43. Li Y, Mao AS, Seo BR, Zhao X, Gupta SK, Chen M, Han YL, Shih TY, Mooney DJ, Guo M. Compression-induced dedifferentiation of adipocytes promotes tumor progression. Science advances 2020; 6(4): eaax5611. [DOI:10.1126/sciadv.aax5611]
44. Zhang Z, Xu Y, Xu Q, Hou Y. PPARγ against tumors by different signaling pathways. Onkologie 2013; 36(10): 598-601. [DOI:10.1159/000355328]
45. Belfiore A, Genua M, Malaguarnera R. PPAR-γ agonists and their effects on IGF-I receptor signaling: Implications for cancer. PPAR research 2009; 2009: 830501. [DOI:10.1155/2009/830501]
46. Greenfield JR, Chisholm DJ, Endocrinology DO. Thiazolidinediones - mechanisms of action. Australian Prescriber 2004; 27: 67-70. [DOI:10.18773/austprescr.2004.059]
47. Malaguarnera R, Belfiore A. The insulin receptor: a new target for cancer therapy. Frontiers in endocrinology 2011; 2: 93. [DOI:10.3389/fendo.2011.00093]
48. Lv S, Wang W, Wang H, Zhu Y, Lei C. PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC cancer 2019; 19(1): 204. [DOI:10.1186/s12885-019-5426-6]
49. Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPAR-γ agonists as antineoplastic agents in cancers with dysregulated IGF axis. Frontiers in endocrinology 2017; 8: 31. [DOI:10.3389/fendo.2017.00031]
50. Guo Y, Yu T, Yang J, Zhang T, Zhou Y, He F, Kurago Z, Myssiorek D, Wu Y, Lee P, Li X. Metformin inhibits salivary adenocarcinoma growth through cell cycle arrest and apoptosis. American journal of cancer research 2015; 5(12): 3600-3611.
51. Lattanzio R, Piantelli M, Falasca M. Role of phospholipase C in cell invasion and metastasis. Advances in biological regulation 2013; 53(3): 309-318. [DOI:10.1016/j.jbior.2013.07.006]
52. Thibodeau J, Bourgeois-Daigneault MC, Lapointe R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 2012; 1(6): 908-916. [DOI:10.4161/onci.21205]
53. Liu Z, Gao J, Yang Y, Zhao H, Ma C, Yu T. Potential targets identified in adenoid cystic carcinoma point out new directions for further research. American journal of translational research 2021; 13(3): 1085-1108.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb