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ABSTRACT 
 

Immunometabolism is an emerging field in tumor immunotherapy. 
Understanding the metabolic competition for access to the limited nutrients 
between tumor cells and immune cells can reveal the complexity of the 
tumor microenvironment and help develop new therapeutic approaches for 
cancer. Recent studies have focused on modifying the function of immune 
cells by manipulating their metabolic pathways. Besides, identifying metabolic 
events, which affect the function of immune cells leads to new therapeutic 
opportunities for treatment of inflammatory diseases and immune-related 
conditions. According to the literature, metabolic pathway such as glycolysis, 
TCA cycle, and fatty acid metabolism, significantly influence the survival, 
proliferation, activation, and function of immune cells and thus regulate 
immune responses. In this paper, we reviewed the role of metabolic 
processes and major signaling pathways involving in T-cell regulation and T-
cell responses against tumor cells. Moreover, we summarized the new 
therapeutics suggested to enhance anti-tumor activity of T cells through 
manipulating metabolic pathways. DOI: 10.52547/ibj.3811 
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INTRODUCTION 

 

mmunometabolism, a term first used in 2011, is a 

new field of research that seeks to improve our 

understanding of the multifaceted relationship 

between the metabolic and the immune system, from 

metabolic features of the immune cells to metabolic 

disorders by these immune cells
[1,2]

. Over the past 

decade, immunologists have focused on altering 

metabolic pathways within immune cells to enhance 

their optimal function
[3]

. Also, identifying metabolic 

events affecting the function of immune cells provides 

new therapeutic opportunities for treatment of the 

immune-related and inflammatory diseases
[4]

. 

Metabolic processes, such as glycolysis, TCA cycle, 

and fatty acid metabolism, notably influence the 

function of immune cells and are now considered  

as the main factors regulating the immune  

responses
[4]

. This review aims to understand the role of 

metabolic pathways in T-cell responses, especially 

against tumor cells; we also provide the present 

knowledge on how the antitumor activity of T cells  
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can be enhanced through manipulating the metabolic 

events. 

 

Six major metabolic pathways 
The major metabolic pathways involved in the 

survival, proliferation, and activation of the immune 

cells contain glycolysis, pentose phosphate pathway, 

TCA cycle, fatty acid oxidation, fatty acid synthesis, 

and amino acid synthesis, particularly tryptophan, 

arginine, and glutamine
[5]

 (Fig. 1).  

 

Glycolytic metabolic pathway 
In glycolytic metabolism, two molecules of pyruvate 

are produced from each molecule of glucose, resulting 

in only two molecules of ATP. It is considered a 

relatively inefficient pathway for the production of 

cellular ATP. However, the glycolytic pathway does 

not require oxygen and can occur in both aerobic and 

anaerobic conditions
[6,7]

. Furthermore, it provides other 

imperative factors for cell survival by promoting the 

production of NADH, a cofactor of various enzymes, 

and shifting some byproducts to other biosynthetic 

pathways to support anabolic growth, including 

glucose-6-phosphate for the synthesis of ribose during 

the pentose phosphate pathway, 3-phosphoglycerate for 

the production of amino acids during the biosynthesis 

of serine, and pyruvate for the synthesis of citrate in 

the Krebs cycle
[6]

. 

 

Pentose phosphate pathway 
The pentose phosphate pathway shifts the mediators 

of the glycolytic pathway to the production of 

nucleotide and amino acid precursors that are 

necessary for cell growth and proliferation
[8]

. This 

pathway involves the oxidation of glucose but is an 

anabolic rather than a catabolic pathway, generating 

NADPH, pentose, and ribose-5-phosphate
[5]

. Pentose is 

produced in the non-oxidative phase, while NADPH  

is generated in the oxidative phase and used to  

produce reactive oxygen species during respiratory 

explosion as well as glutathione and other 

antioxidants
[5]

. 

 

 
 

Fig. 1. Major metabolic and signaling pathways in immunometabolism. During the glycolysis pathway, glucose is converted to 

pyruvate, which can trigger the TCA cycle. NADH and FADH2 produced in this cycle deliver their electrons to the electron transport 

chain, which finally leads to ATP production. The pentose phosphate pathway (PPP) converts glycolytic pathway intermediates to 

compounds such as ribose to produce nucleotides, amino acids, and NADPH. Citrate removed from the TCA cycle is used together 

with NADPH for fatty acid synthesis. Fatty acids can also be oxidized to produce NADH and FADH2, which again leads to the 

production of ATP from the electron transport chain. Finally, amino acid metabolism provides energy for cell growth and protein 

biosynthesis through the TCA cycle. Under nutrient deficiency conditions, LKB1-AMPK pathway signaling inhibits glycolysis and 

FAS pathways as well as increases fatty acid oxidation. During the activation or in nutrient-rich conditions, PI3K-Akt and mTORC1 

signaling increases glycolysis, fatty acid synthesis, and amino acid metabolism. SREBP-α, sterol regulatory element-binding protein-α; 

ADP, adenosine diphosphate 
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Tricarboxylic acid cycle pathway 
The TCA cycle (citric acid cycle or Krebs cycle) is a 

metabolic pathway appropriate for supplying cellular 

ATP and CO2 through oxidation of acetyl-CoA, 

derived from carbohydrates, fatty acids, and proteins
[9]

. 

The TCA cycle and OXPHOS are the principal sources 

for ATP production in cells and need more energy and 

longevity
[6]

. Other byproducts of the TCA cycle, 

including NADH and FADH2, support OXPHOS  

and highly efficient for ATP production by transferring 

electrons to oxygen during cellular respiration; 

moreover, citrate generates N-acetylglucosamine 

uridine diphosphate and succinate, two essential 

substances for the physiological function of immune 

cells
[9]

. 

 

Fatty acid oxidation pathway  
The FAO pathway converts fatty acids into several 

products, including acetyl-CoA, NADH, and FADH2, 

that are needed to produce cellular energy
[6]

. Acetyl-

CoA then enters the TCA cycle, while NADH and 

FADH2 transfer electron to the coenzyme Q of the 

electron transport chain, which eventually produces 

ATP
[10]

. 

 

Fatty acid synthesis pathway  
The FAS pathway leads to production of needful 

lipids for cell growth and proliferation
[6]

. This pathway 

uses the products of other metabolic pathways such as 

glycolysis, TCA cycle, and pentose phosphate 

pathway
[6]

. The major substrate for synthesis of fatty 

acids is cytoplasmic acetyl-CoA that is converted to 

malonyl-CoA. Seven molecules of malonyl-CoA are 

then combined with an acetyl-CoA via the fatty acid 

synthase enzyme to form palmitate, which finally 

produces other types of fatty acids
[11]

. 

 

Metabolic pathways of amino acids 
Amino acid metabolism plays an important role in 

different aspects of cell biology
[6]

. Glutamine, arginine, 

and tryptophan are the key amino acids studied in the 

immune system. For instance, glutamine and aspartate 

are required for the synthesis of purine and pyrimidine. 

Glutamine may also be utilized by active proliferating 

cells as an alternative to entering the TCA cycle, where 

it involves in ATP production or fatty acid synthesis. 

Other amino acids, including arginine and tryptophan, 

are metabolized through several other pathways to 

support cell proliferation and anabolic processes
[6,12]

. 

Taken together, all the mentioned metabolic pathways 

possess unique purposes within the cell and are 

regulated by specific signaling pathways, depending on 

the cell requirements. 

 

Major signaling pathways in immunometabolism 
Major signaling pathways involve in 

immunometabolism are PI3K/AKT, mTOR, and 

LKB1-AMPK
[13]

. 

 

PI3K-Akt signaling in T-cell activation 
Following T-cell activation, signaling mediated by 

TCR, CD28, and IL-2R leads to the phosphorylation 

and activation of PI3K, as well as inactivation of PI3K 

suppressor molecules such as PTEN and 

phosphoinositide-3-kinase interacting protein
[13]

. PI3K 

converts PIP2 to PIP3, a factor that facilitates the 

activation of downstream molecules, including Akt. 

Finally, the activation of Akt increases the metabolism 

and the activation of T cells
[13,14]

. 

 

mTOR signaling in T-cell activation 
mTOR is a member of the phosphatidylinositol 3-

kinase family of kinases, and the main component of 

two distinct protein complexes, including mTORC1 

and mTORC2. These complexes regulate diverse 

cellular processes such as growth, proliferation, 

stimulation, survival, autophagy, and transcription
[13]

. 

mTORC1 is sensitive to nutrients such as amino acids, 

and upon activation, it promotes cell growth, protein 

transport, lipid synthesis, and autophagy inhibition. On 

the other hand, mTORC2 acts as a protein tyrosine 

kinase that activates insulin receptors and insulin-like 

growth factor receptors. It is also involved in the 

organization of the cytoskeleton
[15]

. 
 

LKB1-AMPK signaling pathway in T cell activation 
LKB1 is a serine/threonine kinase that acts as a 

tumor suppressor and inhibits the proliferation and 

metabolism of cancer cells through phosphorylating 

and activating AMPK
[16]

. The LKB1-AMPK signaling 

pathway plays a substantial role in regulating cellular 

metabolism, proliferation, and survival in response to 

nutrients
[17]

. The signaling of AMPK inhibits metabolic 

pathways such as glycolysis
[18]

, glutaminolysis
[13]

, and 

lipogenesis
[19]

 while enhances catabolic processes like 

mitophagy and autophagy
[13]

.  
 

Cross-regulation of signaling pathways  
The signaling pathways can regulate each other; for 

instance, in nutrient-rich conditions, activating the 

PI3K-Akt and mTORC1 signaling pathways increases 

glycolysis, mitochondrial development, and fatty acid 

synthesis, but suppresses autophagy. Akt activation 

leads to the phosphorylation of LKB1 and suppression 

of its function. This regulation has not yet been 

reported in T cells
[20]

. Under a nutrient-deficient 

condition, LKB1-AMPK signaling inhibits glycolysis 
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and fatty acid synthesis while elevates mitochondrial 

homeostasis and autophagy. However, the modulation 

of these mechanisms in T cells needs further 

investigation
[13]

. Understanding the signaling pathways 

regulating immunometabolism may help discover 

therapeutic strategies to target metabolic mediators and 

enhance the T-cells responses in human diseases, 

including cancer (Fig. 1).  
 

Metabolic regulation during T cell evolution 
During the development of T lymphocytes in the 

thymus, the proliferation of double-negative 

thymocytes, along with the activation of the PI3K-

AKT signaling transduction, increases the expression 

of glucose transporter, Glut1, which promotes 

glycolysis pathway. Therefore, double-negative 

thymocytes transit to double-positive thymocytes
[21,22]

. 

At this stage, the expression of Glut1, and 

subsequently the proliferation rate and metabolic 

activity of double-positive thymocytes decreases
[23]

. 

Finally, during the transition to the single positive T 

cells, glycolysis reduces, and shifts to FAO and 

OXPHOS pathways
[23,24]

. 
 

Metabolic regulation of naive T cells 
The primary function of naive T cells is antigen 

monitoring, which requires a relatively small amount 

of ATP to support processes such as ion homeostasis, 

membrane adhesion, and actin cytoskeleton 

rearrangement. Thus, naive T cells bear a rather 

catabolic profile and tend to produce energy through 

OXPHOS
[25]

. In addition to glucose, glutamine and 

fatty acids are considered the main sources of fuel for 

naive T cells. Under glucose deficiency, glutamine 

could be a source of ATP to facilitate naive T-cell 

proliferation
[26]

 (Fig. 2).  
 

 

 
 

Fig. 2. Metabolic pathways of T cell subtypes. Different T cell subsets rely on distinct metabolic pathways to promote cell survival, 

lineage generation, and function. Naïve T cells mainly use the OXPHOS metabolic pathway. Effector T cells use glycolysis, fatty acid 

synthesis, and glutaminase to proliferate and produce cytokine. Treg cells utilize OXPHOS and fatty acid oxidation. Similarly, 

memory T cells also require OXPHOS and FAO to increase cell lifespan. 

 [
 D

O
I:

 1
0.

52
54

7/
ib

j.3
81

1 
] 

 [
 D

O
R

: 2
0.

10
01

.1
.1

02
88

52
.2

02
3.

27
.1

.1
.9

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ib

j.p
as

te
ur

.a
c.

ir
 o

n 
20

26
-0

2-
16

 ]
 

                             4 / 14

http://dx.doi.org/10.52547/ibj.3811
https://dor.isc.ac/dor/20.1001.1.1028852.2023.27.1.1.9
https://ibj.pasteur.ac.ir/article-1-3811-en.html


Abdesheikhi et al. Metabolic Regulation of T cells for Cancer Therapy 

 

 
Iran. Biomed. J. 27 (1): 1-14 5 

 

Metabolic regulation of effector T cells 
Effector T cells prefer glycolysis and OXPHOS 

metabolism, indicating higher metabolic needs than 
naive T cells

[25]
. Unlike naive T cells, high expression 

of Glut1 is of special importance in the survival of 
effector T cells. However, evidence has shown that 
these cells are not completely dependent on glucose to 
produce ATP. A study in mice has reported that 
effector T cells use glutamine to maintain intracellular 
ATP levels in glucose-deficient conditions

[27]
, but 

another study has highlighted the role of Glut1 
expression and glycolysis in the differentiation of 
effector T cells

[28]
. While both CD8

+
 T and CD4

+
 T 

subsets augment glycolysis and glucose transporter 
Glut1 expression, CD8

+
 T cells perform less glycolytic 

activities than CD4
+
 T cells and, thus, rely more on the 

OXPHOS for their effector function
[29]

 (Fig. 2).  
 

Glucose metabolism in effector T cells 
The mTOR is considered as the major regulator of 

effector T cell metabolism by modulating glycolysis. 
When T cell is activated, triggering the PI3K/Akt 
signaling pathway can augment mTOR signaling and 
rises the expression of HIF-1α, the key player in 
response of cells to hypoxic conditions. HIF-1α 
impresses different downstream targets including 
nutrient receptors (such as GLUT-1, SLC1a5, and 
Solute Carrier Family 1 Member 5) to enable cells to 
uptake and utilize glucose during glycolysis

[30]
. 

According to the available data, this pathway 
predominantly induces the differentiation to Th17 cells 
through direct interaction with the IL-17 promoter

[31]
; 

indeed, mTORC1 predominantly regulates the 
differentiation into Th1 and Th17, and mTORC2 is 
involved in differentiation into Th2 subset

[15]
. Other 

factors activated by mTOR is Myc transcription 
factors, present in the downstream of TCR signaling to 
regulate glycolysis and glutaminolysis in T cells

[32]
. In 

addition to mTOR, the IRF4 controls the glycolytic 
pathway of effector T cells, as in the absence of IRF4, 
glucose uptake and glycolysis are impaired in the 
activated CD4

+
 T cells

[33]
. Glycolysis can control the 

production of IFN-γ from T cells by the glycolytic 
enzyme GAPDH. This enzyme inhibits the translation 
of IFN-γ by binding to the 3′UTR region in the related 
mRNA

[27]
. Also, LDHA regulates the production of 

IFN-γ in a 3′UTR-independent mechanism. Increased 
conversion of pyruvate to lactate leads to less 
dependence of the cell on OXPHOS and the TCA cycle 
for energy production. Afterwards, transferring of the 
citrate from mitochondria to the cytosol and its 
conversion to acetyl-CoA in the cytosol results in 
histone acetylation and transcription of the IFN-γ 
gene

[34]
. Overall, these studies highlight the vital role 

of metabolic features in determining the phenotype of 
the cell. 

Amino acid metabolism in effector T cells 
Amino acid metabolism can affect the activity and 

the differentiation of T cells. For example, the high 

levels of glutamine and its metabolite, alpha-

ketoglutarate, stimulate the mTORC1 signaling 

pathway to differentiate into Th1 and Th17 

subsets
[35,36]

. In contrast, diminished glutamine and 

leucine metabolism leads to a decrease in mTORC1 

activity and cellular Myc expression, thereby, blocking 

T-cell activation and differentiation into Th1 and Th17, 

while maintaining Treg cells
[37,38]

. According to the 

literature, effector CD4
+
 T cells, including Th1, Th2, 

and Th17, rely mainly on glycolysis and 

glutaminolysis, while Treg cells use lipid oxidation 

pathway
[39]

. Together, these studies suggest that the 

uptake and utilization of amino acids are required for 

proliferation and optimal performance of the effector T 

cells. 
 

Fatty acid metabolism in effector T cells 
Effector T cells use several anabolic pathways to 

achieve appropriate cellular responses. For instance, 

high glucose catabolism leads to the production of 

short chains of carbon molecules that can be 

transferred to the TCA cycle and increases FAS. In this 

context, Berod et al.
[40] 

have observed that blocking 

FAS rate-limiting enzyme ACC1, disrupts Th17 

differentiation in both mouse and human T cells; in 

addition, knock-out of the ACC1 gene in murine T 

cells, protects animals against Th17-mediated 

autoimmune encephalomyelitis  
 

Metabolic regulation of memory T cells 
During an inflammatory response, effector T cells 

need high metabolic activity for their proliferation and 

function. At the peak of a response, a metabolic shift 

from anaerobic glycolysis in effector T cells to FAO is 

required to generate a memory T cell population
[21,41]

. 

Memory T cells primarily use FAO oxidation as their 

main energy source, which is regulated by tumor 

necrosis factor 6 receptor and IL-15. TRAF6 increases 

FAO by activation of adenosine monophosphate-

activated kinase
[21,42]

, while IL-15 does the same by 

up-regulating the FAO rate-limiting enzyme, CPT1, 

and inducing mitochondrial biogenesis
[43]

. Finally, we 

can conclude that changes in metabolism and 

mitochondrial dynamics are critical for the 

development, longevity, and secondary response in 

memory T cells (Fig. 2).  
 

Metabolic regulation of regulatory T cells 
The differentiation into Treg cells is highly 

dependent on the mitochondrial FAO metabolism, and 

a high rate of glycolysis prevents their generation. Treg 

cells also rely on OXPHOS for their survival and bear 
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more mitochondrial mass and reactive oxygen species 

production than effector T cells
[28,44]

. In comparison 

with memory T cells, Treg cells primarily prefer 

exogenous fatty acids for FAO and need lower FAS 

metabolism
[40]

. Indeed, both Treg and memory T cells 

perform FAO as a basal metabolism, but Treg cells 

also require some aerobic glycolysis to boost their 

suppressive function
[45]

. Activation of AMPK results in 

more Treg differentiation both in vivo and in vitro by 

increasing FAO levels
[28]

. FOXP3 is the main 

transcription factor of Treg cells that limits glycolysis 

by blocking the signaling of mTOR, expression of 

Glut1, and glycolytic enzymes, but promotes FAO by 

rising the expression of the CPT1 enzyme
[46]

. PTEN is 

an intracellular phosphatase that supports Treg function 

and prevents autoimmunity by stabilizing FOXP3 

expression and inhibiting mTOR signaling, and as a 

result, hindering glycolysis. Deletion of PTEN gene 

from Treg cells of mice leads to dysfunction of Tregs 

and consequently, systemic autoimmunity, and 

lymphoproliferative disorders
[47]

. Similarly, protein 

phosphatase 2 is another intracellular phosphatase that 

enhances Treg function by inhibiting mTOR and 

glycolysis
[48]

 (Fig. 2).  

 

Effects of tumor metabolism on T cells 
Tumor metabolism refers to changes in the 

metabolism pathways of tumor cells compared to most 

normal cells. Tumor cells mainly use glycolysis to 

produce energy, which causes acidification and lacking 

the oxygen in the tumor microenvironment
[30,49]

. These 

highly proliferating cells compete with T cells to 

uptake extra amounts of urgent nutrients, including 

glucose, amino acids, and fatty acids , which leads to 

food deprivation, hypoxia, and toxic metabolites 

deposited in the environment
[50]

. These conditions, 

together with the expression of PD-L1 in tumor cells, 

impede T-cell metabolism and instead rise tumor 

metabolic activity
[51]

. There are also subsets of 

suppressive cells in the tumor microenvironment 

including MDSCs, which can also halt the antitumor 

response of T cells by reducing key amino acids such 

as arginine and tryptophan
[52]

. Moreover, different 

types of myeloid cells such as MDSCs, DCs, and 

tumor-associated macrophages release IDO into the 

tumor microenvironment; this enzyme converts 

tryptophan to its metabolites, especially kynurenine, 

and prevents the anti-tumor activity of T cells
[53]

. In 

addition, IDO can increase the expression of CFH and 

FHL-1
[54,55]

. FHL-1 levels is related to the increased 

recruitment of MDSCs and Treg cells, both of which 

cause immuno-suppression
[54]

. The hypoxic condition 

has been shown to induce the expression of CD39 and 

CD73 enzymes in various cell types in the tumor 

microenvironment. These ectonucleotidases break 

down the ATP molecules into adenosine, a ligand for 

purine receptors A2A and A2B that express on a 

diverse range of immune cells and enable the cells to 

suppress the antitumor immunity in T cells
[56,57]

. The 

Treg cells in most cancer tissues display a high 

expression level of CD36 in comparison to other 

tissues
[58]

. Also, a study on a mouse model with a 

genetic knockout of CD36 has shown as decrease in 

the infiltration of Treg cells into the tumor site, but the 

levels of infiltrated antitumor T cells increased
[58]

. 

Therefore, concentrated CD36 in Treg cells probably 

inhibits the metabolic fitness of Tregs in the tumor 

microenvironment and improves tumor prognosis
[59]

. 

In vitro studies have revealed that the increased levels 

of extracellular lactate and H⁺ in the tumor 

microenvironment can hamper proliferation, survival, 

cytotoxicity, and cytokine production in mouse and 

human CD8
+
 T cells, the fundamental players in 

eradicating tumor cells through triggering the signals 

from V-domain immunoglobulin suppressor of T-cell 

activation, an acidic pH-selective ligand for P-selectin 

glycoprotein ligand-1
[60]

. Another mechanism reported 

for tumor cells to interfere with T-cell activity is 

releasing oncometabolite, (R)-2-hydroxyglutarate, 

which disrupts T-cell receptor signaling, nuclear factor 

of the activated T cells, and polyamine biosynthesis in 

CD4
+
 and CD8

+
 T cells. This metabolite also increases 

methylation and modifies transcription profile by 

inhibiting dioxygenase enzymes such as histone 

demethylase
[61]

. A high rate of tumor cell necrosis 

causes an increment in potassium levels in the tumor 

microenvironment, which reduces the cytoplasmic 

levels of acetyl-CoA in T cells and limits T-cell 

function
[62]

. Most tumor cells express the enzyme 

iNOS, which causes the elimination of arginine within 

the tumor microenvironment
[63]

. In addition, M2 

macrophages can also hydrolyze arginine by arginase 

expression and eventually cause arginine depletion
[64]

. 

Arginine plays a critical role in the function of T and 

natural killer cells, and decreasing arginine levels in 

TIME suppresses the function of effector killer T 

cells
[65]

. Mitochondrial metabolism is also crucial for T 

cells. Anoxia within the tumor microenvironment 

promotes mitochondrial fragmentation, decreases ATP 

manufacturing, and induces exhausted T cells
[66]

. High 

mitochondrial mass shows advanced respiratory 

capacity necessary to produce long-lived memory 

CD8
+
 T cells

[43]
. Consistent with this phenomenon, the 

ability of T effectors to generate memory T cells is 

impaired when the mitochondrial membrane fusion 

protein optical atrophy 1 is deleted in mice
[67]

. 

Consequently, mitochondrial fusion can enhance the 

survival of CD8
+
 T cells and convert the surface 
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markers and bioenergic profile of these cells to 

memory T cells
[67]

. Current evidence or have 

confirmed that tumor cells use nanotubes to hijack the 

mitochondria of immune cells
[68]

, which results in the 

immune cell suppression, but the empowerment of 

tumor cells. 

 

Targeting T cell metabolism for cancer treatment 
Regarding the key role of T cells in defense against 

tumor cells, recent studies have focused on targeting 

metabolic pathways in order to fortify T-cell function 

and longevity. It is clear that the modulation of mTOR 

signaling in the tumor microenvironment has 

significant effects on T-cell metabolism and function; 

thus, the accurate understanding of how targeting 

tumor cells alter T-cell immunity may be helpful
[69]

. 

Research has also examined the effects of other 

molecular targets on metabolic pathways involving in 

T cell activation
[70,71]

. Factor 4-1BB is a co-stimulatory 

molecule detectable in most immune cells and is highly 

inducible in DCs and Treg cells
[72]

. Interaction of 4-

1BB with its ligand induces strong NF-κB activation to 

enhance CTL function
[73]

. This molecule also increases 

fatty acid and glucose consumption and boosts 

mitochondrial biogenesis. In fact, 4-1BB supports 

antitumor immunity by enhancing T-cell mitochondrial 

function
[74,75]

. Immunotherapy with 4-1BB agonist 

antibodies has long been used in several clinical 

trials
[76]

. As mentioned earlier, high lactate levels and 

low pH are associated with a decrease in the 

effectiveness of immunotherapy. Hence, inhibiting 

lactate production may raise immunotherapy 

effectiveness by restoring T-cell function while 

repressing Treg activity
[77,78]

. The gut microbiota can 

turn non-absorbable polysaccharide into short-chain 

fatty acids, such as acetate, butyrate, and propionate
[79]

. 

He et al.
[80]

 confirmed that butyrate, the microbial 

metabolite of the intestine, stimulates the IL-12 

signaling pathway to promote CD8
+
 cell-mediated 

antitumor response, leading to the improved efficacy of 

oxaliplatin treatment. Accordingly, the oxaliplatin-

sensitive sufferers display higher ranges of serum 

butyrate in comparison to sufferers with tumors 

resistant to oxaliplatin. Altogether, exploring new 

strategies to inhibit tumor cell metabolism and improve 

the ability of T cells to obtain nutrients might be a 

challenge for future studies (Table 1 and Fig. 3).  

 

Targeting glucose metabolism in T cells 
Expression of the programmed cell death, PD-L1 on 

tumor cells activates the Akt/mTOR pathway to boost 

glycolytic metabolism in tumor cells. In contrast, the 

interaction between PD-L1 and its receptor PD-1 on T 

cells makes these cells unable to utilize glucose and 

branched-chain amino acids, but instead, the levels of 

FAO increase. Monoclonal antibodies that block the 

PD-1/PD-L1 checkpoint may restore glucose levels in 

the tumor microenvironment, leading to an increase in 

T-cell glycolysis and IFN-γ production
[30,81]

. Therefore, 

inhibitors of PD-1/PD-L1 interaction can help T cells 

eliminate tumor cells by modulating their 

metabolism
[81,82]

. Similar to PD-1, LAG-3 is another 

inhibitory molecule on T cells. Previte et al.
[83]

 

reported that naive T cells with LAG-3 deficiency 

showed increased oxidation and glycolytic metabolism 

due to an increase in the mitochondrial mass. 

Therefore, targeting LAG-3 may provide a new 

strategy for antitumor therapy. Cytotoxic T lymphocyte 

antigen 4 is expressed on the surface of chronically 

activated T cells. This inhibitory molecule suppresses 

the PI3K/Akt/mTOR signaling pathway and prevents 

glucose uptake in T cells
[84,85]

. Imatinib, a BCR-ABL 

kinase inhibitor, has been indicated to have different 

effects on T-cell metabolism. According to 

Beckermann et al.
[86]

, this medication activates CD8
+
 T 

cells, while induces Treg cell apoptosis by reducing 

IDO expression. Moreover, metformin as a classic 

regulator of glucose metabolism, has a direct anti-

tumor activity and an indirect effect on strengthening 

CTL function. This drug blocks the mTOR pathway 

and interferes with tumor glycolysis and thus tumor 

growth
[87]

. Also, metformin downregulates the PD-L1 

expression on the tumor cells and increases the 

cytotoxic function of CTL
[87]

. The proviral integration 

site for moloney murine leukemia virus PIM is a 

serine/threonine kinase involved in regulating T-cell 

glucose metabolism. Inhibiting the PIM kinase, 

increases mTORC1 activity and leads to higher uptake 

of glucose by T cells and enhances the antitumor 

immunity
[88]

. 

 

Targeting lipid metabolism in T cells 
Some studies have noted the role of lipid 

metabolism, including intracellular cholesterol levels, 

in regulating tumor cell as well as T-cell activity. The 

effect of some lipid-metabolizing drugs, such as 

statins, on T cells is still controversial. According to 

the literature, statins can negatively affect tumor cells 

by inhibiting lipid metabolism and also affect T cells 

by reducing the cholesterol levels
[89]

. One of the 

metabolic pathways for cholesterol synthesis is the 

MVK pathway. Some studies have reported that tumor 

cells using this pathway can activate the immune 

responses, introducing a new antitumor target for 

immunotherapy. MVK is also important for T-cell 

activation in an Akt/mTOR signaling-dependent 

manner
[90]

.  Avasimibe, as an acyl-CoA acyltransferase 

inhibitor,    prevents    cholesterol     esterification   and
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Table 1. Therapeutic approaches for targeting T cell and tumor metabolism 

Treat Target Signaling pathway Effect 

PD-1/PD-L1 antibodies PD-1/PD-L1 PI3K/Akt/mTOR 
Teffs: increase FAO 

Tumor: inhibit glycolysis 
    

CTLA-4 antibodies CTLA-4 PI3K/Akt/mTOR Teffs: inhibit glucose uptake 
    

Imatinib BCR-ABL kinase/IDO BCR/ABL IDO 
Teffs: activation 

Treg: apoptosis 

Tumor: switch from glycolysis to OXPHOS 
    

CTLA-4 antibodies CTLA-4 PI3K/Akt/mTOR Teffs: inhibit glucose uptake 
    

Imatinib BCR-ABL kinase/IDO BCR/ABL IDO 
Teffs: activation 

Treg: apoptosis 

Tumor: switch from glycolysis to OXPHOS 
    

Metformin PD-L1 LKB1-AMPK system mTOR Tumor: down-regulate PD-L1 expression 
    

PIM kinase inhibitor PIM kinase mTORC1 Teffs: increase glucose uptake 
    

MVK inhibitor MVK PI3K/Akt/mTOR 
Teffs: activation 

Tumor: inhibition 
    

Avasimibe ACAT-1 Cholesterol esterification 
Teffs: activation 

Tumor: inhibit the proliferation and 

Metastasis 
    

GDC-0919 IDO1 Tryptophan Teffs: relieve CD8+ T-cell inhibition 
    

INCB024360 IDO Tryptophan Teffs: increase proliferation and IFN-γ 

production 

    

N-acetylcysteine FOXO1 PI3K/Akt/mTOR Teffs: affect granzyme B secretion and PD-1 

expression 

   
 

V-9302                                                                                       
Glutamine         

transporter 
Glutamine 

Teffs: no affect 

Tumor: inhibit the proliferation 

Teff, effector T cell 

 

 
enhances the   level   of   intracellular   free  cholesterol 

tumor    cells,  thus    inhibiting   the  proliferation   and 

metastasis in tumor cells and increasing the activity of 

CD8
+
 T cells. Avasimibe has also been used to treat 

cancer in murine models of tumors and shown 
considerable antitumor effects. A combination of 

avasimibe with PD-1 antibodies has shown a better 

efficacy in regressing tumor progression rather than 

monotherapy
[30,91]

. Fenofibrate is an activator of 
peroxisome proliferator-activated receptor alpha, 

involved in regulating lipid metabolism
[92]

, thereby 

increasing FAO in T cells and reversing the 

suppression of T cells in the tumor 

microenvironment
[93]

. Liu et al.
[94]

 discovered that both 
Treg cells and tumor cells in the tumor 

microenvironment could modify the lipid metabolism 

in T cells by increasing the expression of group IVA 

phospholipase A, a change that eventually results in T 
cell senescence. Senescent T cells have little capacity 

to kill tumor cells. Inhibiting group IVA phospholipase 

A in T cells from breast cancer and melanoma models 

showed that the lipid metabolism reprogrammed in T 

cells and the antitumor ability increased
[94]

. Therefore, 

targeting lipid metabolism in T cells might 

synergistically enhance the therapeutic impact of most 

cancer treatments. 
 

Targeting T cell amino acid metabolism 
IDO1 catalyzes oxidation of tryptophan to 

kynurenine and is partly responsible for the acquired 

immune tolerance to cancer. A research performed on 

patients with colon cancer highlighted a reverse 

association between IDO expression and T-cell 

infiltration into the tumor microenvironment. This 

study also observed a lower rate of survival in the 

patients with higher IDO levels
[95]

. Navoximod 

(GDC0919) is a new IDO inhibitor tested in several 

tumor models with potential immunomodulatory 

properties. This drug can improve CD8
+
 T cell 

cytotoxicity by reducing the amount of kynurenine
[96]

. 

In addition, the combination treatment of Navoximod 

with chemotherapy, radiotherapy, or vaccine leads to  
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Fig. 3. Therapeutic approaches for targeting T cell and tumor metabolism. Tumor cells compete with T cells for the uptake of 

essential nutrients including glucose, amino acids, and fatty acids, leading to food deprivation, hypoxia, and the production of toxic 

metabolites in the tumor microenvironment to further inhibit T cell function. Some drugs targeting the metabolic processes of T cells 

and tumor cells contribute to the antitumor effect, such as PD-1/PD-L1 antibodies, CTLA4 antibodies, metformin, fenofibrate, V-9302, 

Avasimibe, MVK inhibitor, GDC-0919, and imatinib. PD1, death protein 1; FA, fatty acid; ROS, reactive oxygen species; CTLA-4, 

cytotoxic lymphocyte antigen 4 

 

 

the progressed antitumor response
[96]

. Another IDO 

inhibitor named INCB024360, results in the increased 

T-cell proliferation and IFN-γ production in  

mouse models
[97]

. Administration of IDO inhibitors  

can  substantially increase the  production  of cytokines 

including IL-2, TNF-α, and IFN-γ in CD8
+
 T cells and 

enhance their functions
[98]

. Therefore,  using  IDO 

inhibitors is one of the strategies currently under 

investigation for activating T cells in turmeric 

conditions. Studies have shown that PD-1 expression 

reduces when CD8
+
 T cells are cultivated under 

glutamine-restricted conditions
[99]

. Decreased 

expression of PD-1 results in boosting the activity of 

CD8
+
 T cells, suggesting a helpful strategy to improve 

immunotherapy
[100]

. Similarly, NAC can inhibit the 

expression of FOXO1 by activating the PI3K/Akt 

signaling pathway in CD8
+
 T cells and increase 

secretion of granzyme-B and, consequently, the anti-

turmeric capacity of these cells
[101]

. NAC is an 

analogue of cysteine, which is required for glutathione 

synthesis. Glutathione possesses antioxidant properties 

and counteracts the oxidative stress observed in the 

tumor microenvironment
[102]

. Glutamine is also a target 

metabolite in cancer therapy. In a study on mouse 

TNBC model, T effectors and tumor cells compete for 

glutamine from the microenvironment; deletion of 

glutaminase in tumor cells, an enzyme crucial for 

glutamine metabolism, activates T cells and enhances 

antitumor immune responses
[103]

. In addition, V-9302, 

an inhibitor of the glutamine transporter, can 

specifically inhibit glutamine uptake in TNBC cells, 

but not in antitumor T cells, representing a promising 

therapeutic strategy against TNBC
[103]

. 

Metabolic changes in the tumor microenvironment 

can intensively affect T cells, from activation to their 

differentiation and function. Therefore, a better 

understanding of immunometabolic events is of utmost 

importance to achieve new anticancer therapeutics. 

Based on the preclinical and clinical studies, the 

longevity and stability of T cells used in 
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immunotherapy is the main factor determining the 

effectiveness of therapy. Further studies are needed to 

develop techniques for manipulation of the metabolic 

pathways in order to enhance T cell responses against 

cancer progression.  

 

Conclusion 
To sum up, studies on immunometabolism in T 

lymphocytes can not only facilitate basic research but 

also provide potential targets in drug discovery against 

immune-related disorders, including cancer. 
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