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ABSTRACT
OPEN ACCESS
Background: Hypoxic tumor microenvironment is one of the important
impediments for conventional cancer therapy. This study aimed to
computationally identify hypoxia-related mRNA signatures in nine hypoxic-
conditioned cancer cell lines and investigate their role during hypoxia.
Methods: Nine RNA-Seq expression data sets were retrieved from the Gene
Expression Omnibus database. DEGs were identified in each cancer cell line.
Then 23 common DEGs were selected by comparing the gene lists across the
nine cancer cell lines. qRT-PCR was performed to validate the identified DEGs.
Results: By comparing the data sets, GAPDH, LRP1, ALDOA, EFEMP2, PLOD2,
CA9, EGLN3, HK, PDK1, KDM3A, UBC, and P4HA1l were identified as hub
genes. In addition, miR-335-5p, miR-122-5p, miR-6807-5p, miR-1915-3p, miR-
6764-5p, miR-92-3p, miR-23b-3p, MiR-615-3p, miR-124-3p, miR-484, and miR-
455-3p were determined as common miRNAs. Four DEGs were selected for
MRNA expression validation in cancer cells under normoxic and hypoxic
conditions with gRT-PCR. The results also showed that the expression levels
determined by gRT-PCR were consistent with RNA-Seq data.
Conclusion: The identified PPl network of common DEGs could serve as
potential hypoxia biomarkers and might be helpful for improving therapeutic
strategies. DOI: 10.52547/ibj.3803
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INTRODUCTION

gene expression signature is a single or

combined group of genes whose expression

responds to a particular signal or changes in
cellular status in a predictable way. Gene signatures are
frequently extracted from a set of DEGs by comparing
two groups, such as cell lines under different treatment
conditions. Gene expression signatures can therefore
be used as surrogate markers to comprehend the
complexity of pathway activation.

List of Abbreviations:

Oxygen deprivation occurs in almost all solid
tumors. A shortage of oxygen is the consequence of
inadequate oxygen delivery via inefficient tumor
vasculature™. Hypoxia affects tumor behavior and
facilitates tumor progression and metastasis, leading to
resistance to conventional chemo- and radiotherapy!.
Therefore, identifying the key genes regulating cancer
cell behavior during hypoxia is essential for developing
anticancer agents that efficiently kill tumor cells under
hypoxic conditions.

A growing number of studies have identified DEGs

ALDOA, Aldolase A; BC, between centrality; BP, biological process; CC, cellular component; CC, closeness centrality; DAVID, Database
for Annotation, Visualization and Integrated Discovery; DEG, differentially expressed genes; MCC, maximum clique computation;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GO, gene ontology; KEGG, Kyoto encyclopedia of Genes and Genomes; MF,
molecular function; miRNA, microRNA; mRNA, messenger RNA; PDK1, pyruvate dehydrogenase kinase 1; PPI, protein-protein
interaction; gRT-PCR, reverse transcription-quantitative PCR; RNA-Seq, RNA sequencing
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during hypoxia in different cancer cell types using
RNA-Seq analysis®®. However, their findings only
represent the genetic characteristics of specific tumor
cells during hypoxia. In this study, we used RNA-Seq
datasets of nine different hypoxic-conditioned cancer
cell lines to find hypoxia-related mRNA signatures.
Since human cancer cell lines are widely used for
better understanding of cancer biology, cancer cell
characterization, and anticancer drug discovery™, we
selected the available RNA-Seq datasets of cell lines to
explore the effect of hypoxia on gene expression
profiles.

MiRNAs play a central role in regulating gene
expression”). Kulshreshtha and colleagues™® described
a functional link between hypoxia and miRNA
expression. They indicated that miRNAs profile are
regulated by hypoxia in a variety of cell types, and
their dysregulation is associated with many cancers,
making their signature a potential prognostic
biomarker®. In the present study, common DEGs
along with their hub genes among the nine different
cancer cell lines were screened during hypoxia. Then
we investigated a PPl network and predicted a
miRNA-targeted gene network, which might provide a
basis for further studies. Our aim was to discover the
molecular mechanism underlying the effect of hypoxia
and provide potential prognostic markers.

MATERIALS AND METHODS
Raw biological data and differential RNA
expression analysis
Raw RNA-Seq data of nine hypoxia-conditioned
cancer cell lines were retrieved from the Sequence
Read Archive (www.ncbi.nlm.nih.gov/geo). Among
these datasets, GSE131378 contained four samples of
hypoxic-conditioned and four samples of normoxic-
conditioned A549 cells, while GSE72437 consisted of
five samples of hypoxic-conditioned and five samples
of normoxic-conditioned BeWo cells. Moreover,
GSE78025, GSE81513, GSE84167, GSE13967,
GSE149132, and GSE160491 contained three samples
of hypoxic-conditioned and also three samples of
normoxic-conditioned U78-MG, HCT116, MCF-7,
ASPC-1, T47D, and BCPAP, respectively. GSE131379
also comprised of two samples of hypoxic-conditioned
and three samples of normoxic-conditioned Hela cells.
SAMtools was used to extract raw sequencing reads.
The read quality was examined using FastQC version
0.11.2, and low quality bases and adaptor sequences
were removed using Trimmomatic version 0.32; the
expression level of each transcript was then quantified
in transcripts per million using Kallisto"”. The counts
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were imported into software R v. 3.4.0 using the
tximport R package v. 1.4.0, and the DEGs were
identified with a | log2 fold change | >1 and a false
discovery rate <0.05 using the DESeq2 package in R
v. 3.2.3. The UpSetR package in R was employed to
find common genes between different datasets™™". The
default values were employed for all the packages.

Function enrichment analysis

We used Database for Annotation, Visualization, and
Integrated discovery (DAVID) (https://david.ncifcrf.
gov/; version 6.8) for GO functional analysis and
KEGG pathway analysis of DEGs!™™. The
Evolutionary Relationships (PANTHER) was also used
to determine protein class over-representation™, and
p < 0.05 represented statistical significance.

Construction of a PPI network

Interactions between the common DEGs and other
proteins would be useful to fully understand their
biological roles. In this study, 23 common DEG PPI
network were constructed by Retrieval of Interacting
Genes (STRING; https://string-db.org/). Moreover, 23
common DEGs were integrated into the International
Molecular Exchange Consortium database (https://
www.imexconsortium.org/) to identify the hub genes
information in PPI network™. The protein interaction
network was visualized using NetworkAnalyst
(https://www.networkanalyst.ca) and  Cytoscape
(3.9.1)!. To evaluate the nodes in the PPI network,
we adopted several topological measures, including
degree (k), MCC, BC, and CC. Since degree (k), BC,
and MCC are often used for detecting the hub in a
network’* we determined hub genes based on
connectivity degree (number of interactions) >10,
MCC, and BC using Cytohubba on Cytoscape.

MiRNA interactions analysis

To identify the miRNA-mRNA target interactions,
miRTarBase'?”! and TarBase®™! (both version 8.0) were
employed to collect the miRNA-gene interaction data.
Topological analysis based on degree and betweenness
centrality as key topological parameters was performed
utilizing NetworkAnalyst.

Cell culture for gRT-PCR validation

To validate our findings, we selected four hub genes,
including GAPDH, LRP1, ALDOA, and PLOD2 to
determine their expression in cancer cell lines (A549,
U78-MG, HCT116, Hela, and MCF-7) under hypoxic
or normoxic conditions. Cells were purchased from the
National Cell Bank of Iran (Pasteur Institute, Tehran,
Iran). Cells used in the experiment were cultured in
DMEM supplemented with 10% FBS and incubated in
a humidified incubator with 5% CO2 at 37 °C.
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Cancer cell adaptation to hypoxia

Cells were seeded in a T25 flask and cultured in
DMEM medium supplemented with 10% FBS. The
cells were repeatedly incubated in hypoxic conditions
in an Anoxomat chamber (Mart Microbiology,
Lichtenvoorde, The Netherland; 1% O,) for 4 h and
then incubated in a standard culture environment (5%
CO, and 95% air) at 37 °C for 48-72 h. Cells were
treated twice weekly, and hypoxic-conditioned cell
lines were generated after 20 exposures to hypoxial®?.

RNA isolation and gRT-PCR

Trizol reagent (TaKara, Kusatsu, Shiga, Japan) was
used for RNA isolation from the cells during normoxia
and hypoxia. RNA samples were reversely transcribed
to complementary DNA by the QIAGEN Reverse
Transcription Kit (Qiagen, Germany). Subsequently,
the quantification of cDNA was performed by the qRT-
PCR method using SYBR Green Master Mix
(Amplicon). The reaction conditions were conducted at
95 °C for 10 min, 40 cycles of 95 °C for 10 s, 60 °C for
30 s, and 72 °C for 30 s. The RPLPO was used as an
internal reference control®!. Gene expression levels
were calculated based on the Delta-Delta Ct relative
guantification.

Statistical analysis

Statistical analyses were performed using the
student’s t-test with GraphPad Prism 8 software
(GraphPad Prism, San Diego, CA, USA). The p value
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was considered statistically significant when it was less
than 0.05.

RESULTS

Differential RNA expression analysis

RNA sequencing data from the nine different
hypoxic-conditioned cancer cell lines (A549, BeWo,
U78-MG, HCT116, Hela, MCF-7, ASPC-1, T47D, and
BCPAP) were analyzed, and 23 common DEGs were
identified (Fig. 1), including EGLN3, ANGPTL4,
GPR146, Cdorf47, KCTD11, CA9, PPFIA4, PLOD2,
HK2, and TMEM. Interestingly, all of these genes were
upregulated in the hypoxic-conditioned cancer cell
lines.

Functional categories and pathway analysis

The PANTHER protein classification revealed that
the common DEGs were classified into nine groups
according to their function: protein modifying enzyme
(PPFIA4, PDK1, and PLOD2), scaffold/adaptor
protein (KCTD11), transfer/carrier protein (LRP1),
transmembrane signal receptor (GPR146), cytoskeletal
protein (HK2), extracellular matrix protein (EFEMP2),
intercellular signal molecule (ANGPTL4), metabolite
interconversion enzyme (FUT11, GAPDH, QSOX1,
PFKFB4, ALDOA, and HK2), and regulatory protein
(KDM3A). GO analysis, which covered the three GO
categories (i.e. CC, BP, and MF), was performed using
DAVID. DEGS were enriched significantly in different
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Fig. 1. UpSet plot of DEGs. (A) Total number of DEGs during hypoxia; (B) intersection of gene sets in hypoxic conditions. Black
circles indicate the total number of DEGs with differences in log2 fold change expression in each dataset, and connecting bars show

the overlapping DEGs.
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GO terms, including hexose metabolic process
(ontology: BP), monosaccharide binding (ontology:
MF), and mitochondrial pyruvate dehydrogenase
complex (ontology: CCO); the results are summarized
in Table 1. The significance threshold of p < 0.05 was
selected. Moreover, seven pathways were significantly
enriched based on KEGG pathway analysis, including
HIF-1 signaling pathway, fructose and mannose
metabolism,  glycolysis/gluconeogenesis,  carbon
metabolism, cholesterol metabolism, central carbon
metabolism in cancer, and biosynthesis of amino acids
(Table 2).

PPI network construction and hub gene selection
Using the STRING database, a PPI network obtained
from 23 common DEGs, which was composed of 22
nodes and 25 edges, was constructed and visualized in
Cytoscape (Supplementary Fig. 1). In order to screen
the PPI network’s interactions with other proteins,

which provide important clues about their functions,
the PPI network was integrated into the International
Molecular Exchange Consortium database. A PPI
network composed of 448 nodes and 531 edges was
obtained (Fig. 2). Twelve hub proteins, including
GAPDH, LRP1, ALDOA, EFEMP2, PLOD2, CA9,
EGLN3, HK, PDK1, KDM3A, UBC, and P4HAL, were
identified in this network based on degrees (>10),
MCC, and BC (Fig. 3 and Table 3).

Gene regulatory network analysis

The key miRNAs (miR-335-5p, miR-122-5p, miRr-
6807-5p, mIiR-1915-3p, mIiR-6764-5p, mirR-92-3p,
miR-23b-3p, MiR-615-3p, miR-124-3p, miR-484, and
miR-455-3p) were identified based on network
topological properties (degree and betweenness
centrality). Additionally, our results indicate miR-92-
3p can regulate a large number of MRNA targets
(n=288), as shown by the PPI network (Fig. 4).

Table 1. Top 10 GO analyses of the differentially expressed genes identified from RNA-Seq data of hypoxic-conditioned

cell lines
Category GOID Term p value
0019318 Hexose metabolic process 0.00067
0001666 Response to hypoxia 0.0011
0006006 Glucose metabolic process 0.0011
0006735 NADH regeneration 0.0011
Biological process 0009435 NAD_biosynthetic process 0.0011
0018126 Protein hydroxylation 0.0011
0018401 Peptidyl-proline hydroxylation to 4-hydroxy-L-proline 0.0011
0042866 Pyruvate biosynthetic process 0.0011
0055114 Oxidation-reduction process 0.0011
0061621 Canonical glycolysis 0.0011
0048029 Monosaccharide binding 2.18E-06
0031418 L-ascorbic acid binding 0.00017
0051213 Dioxygenase activity 0.00017
0005506 Iron ion binding 0.00062
Molecular function 0016706 2-oxoglutarate-dependent dioxygenase activity 0.00062
0031545 Peptidyl-proline 4-dioxygenase activity 0.00099
0016491 Ooxidoreductase activity 0.002
0050662 Coenzyme binding 0.0038
0019200 Carbohydrate kinase activity 0.0044
0048037 Cofactor binding 0.0191
0005967 Mitochondrial pyruvate dehydrogenase complex 0.00581
1990204 Oxidoreductase 0.00747
0070820 Tertiary granule 0.0158
0016323 Basolateral plasma membrane 0.0289
Cellular component 0009925 Basal plasma membrane 0.0349
0045178 Basal part of cell 0.0398
0005813 Centrosome 0.0348
0099512 Supramolecular fibre 0.0275
0099081 Supramolecular polymer 0.0282
0005856 Cytoskeleton 0.0482

p <0.05 considered significant
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Table 2. The KEGG pathway analysis of the overlapping DEGs associated with hypoxia

Category Pathways count p value
KEGG HIF-1 signalling pathway 5 2.41E-06
Fructose and mannose metabolism 3 0.00012
Glycolysis/gluconeogenesis 3 0.0006

Carbon metabolism 3 0.0021

Cholesterol metabolism 2 0.0077

Central carbon metabolism in cancer 2 0.0115

Biosynthesis of amino acids 2 0.0119

Quantitative real-time PCR for DEGs

In order to validate the DEGs identified by RNA-seq
analysis, four hub genes, including GAPDH, LRP1,
ALDOA, and PLOD2, were selected for analysis via
gRT-PCR under normoxic and hypoxic conditions.
Primers were designed based on available sequences to
amplify the specific altered genes. Primer sequences
are shown in Table 4. Based on the qRT-PCR results,
the candidate genes were upregulated in A549, U78-
MG, HCT116, Hela, and MCF-7 cells under hypoxic
conditions (Fig. 5). The expression profiles of four
genes confirmed the original transcriptome data
obtained by RNA-Seq.

DISCUSSION

Because hypoxic cells are likely to be resistant to
chemo- and radiotherapy, it is of high importance to
identify the key hypoxia-inducible genes and resistance
mechanisms for efficient therapeutic intervention.
Moreover, it is well established that miRNA plays a
central role in regulating the various biological
pathways®?. Therefore, exploring the role and impact
of mRNA and miRNA in cancer cells, especially
during hypoxia, could be helpful in cancer diagnosis
and treatment.

In the current study, we conducted bioinformatics
analysis to identify the candidate key genes and
biological pathways among nine different cancer cell
lines exposed to hypoxic conditions. Data was
extracted from GSE131378, GSE72437, GSE78025,
GSE81513, GSE131379, GSE84167, GSE13967,
GSE149132, and GSE160491 datasets, among which
23 common DEGs were screened. To our surprise, all
the common DEGs were upregulated in all the nine
hypoxic-conditioned cancer cell lines. In order to gain
some insight into how hypoxia affects the expression
of genes at the molecular level, GO and KEGG
pathway enrichment analyses were carried out!>'4.
Functional enrichment analysis revealed that the
hexose metabolic process, response to hypoxia, and
glucose metabolic process were significantly changed.
According to KEGG enrichment analysis, 23 common
genes were enriched in the HIF-1 signaling pathway,

Iran. Biomed. J. 27 (1): 23-33

including  fructose and mannose metabolism,
glycolysis/gluconeogenesis,  carbon  metabolism,
cholesterol metabolism, central carbon metabolism in
cancer, and biosynthesis of amino acids. Since it is
believed that proteins with more interactions have
higher chances of being involved in the essential
PPI the PPI network was constructed and GAPDH,
LRP1, ALDOA, EFEMP2, PLOD2, CA9, EGLN3, HK,
and PDK1 were identified as the hub genes.

To support our findings, we selected four hub genes
(GAPDH, LRP1, ALDOA, and PLOD?2) for gRT-PCR
validation in A549, U78-MG, HCT116, Hela, and
MCEF-7 cells under normoxic and hypoxic conditions.
Expression patterns of four genes generated by qRT-
PCR were consistent with RNA-seq data. Consistently,
several studies have found that hypoxia-related genes
such as GAPDH, LRP1, ALDOA, EFEMP2, PLOD?2,
CA9, EGLN3, HK, and PDK1 are upregulated during
hypoxia?®2!,

£

27\

“dée

Fig. 2. PPI network of common genes among nine different
cell lines during hypoxia by mapping DEGs into the
NetworkAnalyst database. Purple nodes represent the 23
common DEGs, and the area of each circle demonstrates the
degree of the node in the network. The color of nodes is
proportional to their BC values.
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Fig. 3. Results of algorithms from the Cytohubba. Hub genes were screened by degree, MCC, and BC according to the Cytohubba
plug-in. Centrality in the network was measured by CC. The more forward ranking is represented by a redder color.

Table 3. Summary of the selected hub proteins based on degree, MCC, and BC in hypoxic-conditioned cell
lines (A549, BeWo, U78-MG, HCT116, Hela, MCF-7, ASPC-1, T47D, and BCPA)

Symbol Description Degree BC CcC
GAPDH Glyceraldehyde3-phosphate dehydrogenase 183 66486.07  273.75
LRP1 Low density lipoprotein receptor-related protein 1 59 21784.76  186.65
ALDOA Aldolase A 57 15174.48 189.15
EFEMP2 EGF containing fibulin extracellular matrix protein 2 41 14612.74  160.2667
PLOD2 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 40 14259.61 168.2833
CA9 Carbonic anhydrase 9 30 10950.54 144.0333
EGLN3 Egl nine homolog 3 25 7895 158.2833
HK2 Hexokinase 2 22 7509.14  164.7833
PDK1 Pyruvate dehydrogenase kinase 1 21 6557.02 156.65
KDM3A Lysine demethylase 3A 15 4690.6  151.8667
UBC Ubiquitin C 13 22879.18 212.3667
PAHAL Prolyl 4-Hydroxylase Subunit Alpha 1 11 3109.74  149.9833

Since there is no edge between the neighbors of the node, the MCC is equal to its degree.

28 Iran. Biomed. J. 27 (1): 23-33
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Fig. 4. Network analysis of DEG-miRNA interactions.
NetworkAnalyst was used to visualize data obtained from the
miRTarBase and TarBase databases. Blue squares represent
microRNAs, and red circles represent genes. The area of each
circle demonstrates the degree of the node in the network. The
color of nodes is proportional to their BC values.

GAPDH and ALDOA are involved in glycolysis. It is
widely believed that the overexpression of glycolytic
enzymes in a large number of tumors compensates for
the increased energy demands and supports rapid
tumor growth!®®). However, many glycolytic enzymes
have non-glycolytic functions, as well®®. For instance,
overexpressed GAPDH could inhibit caspase-
independent cell death by inducing Bcl-xL
upregulation, leading to cancer cell survival and
resistance to chemotherapeutic agents®*3. Moreover,
GAPDH protects cancer cells against chemotherapy by
directly binding to the telomeric DNA and prevents the
rapid degradation of telomeres®. More importantly,
GAPDH, which is perceived as a common reference
gene, is upregulates under hypoxic conditions.
Therefore, using GAPDH as a housekeeping gene
should be avoided due to its unstable expression level
during hypoxia.

ALDOA and PDK1 are glycolytic enzymes
that contribute to the progress of cancer and
metastasis®**).  ALDOA  overexpression  could
suppress the expression of proteins responsible for cell-
cell adhesion and induce the expression of eg)ithelial-
mesenchymal transition®. Chang et al.®¥ have
demonstrated a feedback loop between ALDOA and
HIF-1, by which ALDOA activates HIF-/o/MMP9 and
promotes cancer cell invasion. Under hypoxic
conditions, PDK1 attenuates mitochondrial respiration

Iran. Biomed. J. 27 (1): 23-33

and ROS production by inactivating the pyruvate
dehydrogenase®®. Additionally, Gibadulinova et al.l*!
have indicated that carbonic anhydrase IX promotes
metabolic adaptation to hypoxia through the regulation
of PDK1. A number of studies have also revealed that
PDKZ1 overexpression promotes cancer cell metastasis,
but the molecular mechanism is unclear®®*). Siu et
al.®l have explained that PDK1 expression is
associated with ovarian cancer metastasis through the
activation of JNK/IL-8 signaling. It has also been
displayed that procollagen-lysine, 2-oxoglutarate,
PLOD2 promotes migration and invasion of cancer
cells during hypoxia. PLOD2, a regulator of collagen
cross-linking, is located in the upstream of HK2 and
can regulate HK2 expression through the activation of
signal transducer and activator of transcription 3
(STAT3)H,

To predict the correlation of common DEGs with
miRNA, a DEG-miRNA network was constructed
(Fig. 3). These miRNAs have been reported in some
cancer types. We also identified miR-335-5p, miR-
122-5p, miR-6807-5p, miR-1915-3p, miR-6764-5p,
miR-92-3p, miR-23b-3p, mMiR-615-3p, miR-124-3p,
miR-484, and miR-455-3p as the key interacting
mMiRNAs in hypoxia in different cancer cell lines. The
miR-335-5p has been exhibited to have ability to
regulate cancer cell metastasis. Zhang et al.* showed
that miR-335-5p can promote apoptosis in prostate
cancer cells and may be used as a biomarker in the
treatment of this disease®"*?. Upregulation of miR-
6807-5p was reported in glioma specimenst.
Dysregulation of miR-6764-5p was also identified in
pituitary adenomas*4. MiR-92-3p and miR-122-5p
have been identified as the markers of hypoxic
environments. MiR-92-3p can be used as a potential
therapeutic target in patients with metastatic colorectal

Table 4. PCR primers used for the validation of gene
expression by gRT-PCR

Gene-specifi . . .
ene-specific Oligonucleotide primer sequence 5" to 3'

primers
RPLPO F: CCATTCTATCATCAACGGGTACAA
R: TCAGCAAGTGGGAAGGTGTAATC
GAPDH F: GCCATCAATGACCCCTTCAT
R: GCCATGGAATTTGCCAT
LRP1 F: CAACGGCATCTCAGTGGACTAC
R: TGTTGCTGGACAGAACCACCTC
ALDOA F: GACACTCTACCAGAAGGCGGAT
R: GGTGGTAGTCTCGCCATTTGTC
PLOD2 F: GACAGCGTTCTCTTCGTCCTCA

R: CTCCAGCCTTTTCGTGGTGACT
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Fig. 5. The mRNA expression of GAPDH, LRP1, ALDOA, and PLOD?2 in A549, U78-MG, HCT116, MCF-7, and Hela cells under
normoxic and hypoxic conditions analyzed by gRT-PCR. Gene expression levels were calculated based on Delta-delta Ct relative
quantification. The data represents at least two biological replicates, each of which was run in triplicate ('p <0.05; p <0.01).

cancer®*. MiR-455-5p is dysregulated in many
tumor cells’*®! while miR-1915-3p and miR-124-3p
could inhibit apoptosis, resulting in cancer progression.
It has been exhibited that miR-1915-3p may play a role
in the progression of gastric cancer and may have a
potential therapeutic application in gastric cancert*®>",
Contradictorily, miR-484 could promote apoptosis by
targeting Apaf-1°", and miR-23b-3p and miR-615-3p
could act as either tumor suppressors or oncogenes,
which mainly depends on their context!®23!,

In summary, the present study identified hypoxia-
related gene signatures among the hypoxia-conditioned
cancer cell lines using RNA-Seq. Our analysis revealed
the common hub genes and key pathways in cancer
cells under hypoxic conditions. Moreover, we
predicted a miRNA signature, among which miR-335-
5p had the highest betweenness centrality during

30

hypoxia. To our knowledge, for the first time, our
results demonstrate that miR-6807-5p and miR-6764-
5p are dysregulated under hypoxic conditions.
However, further molecular biological experiments are
required to confirm the function of the identified
miRNA associated with hypoxia. The results of the
present study may provide future directions in
identifying the presence of cancer and determining the
characteristics of cancer. For instance, hypoxia is a
characteristic feature of cancer, and the hypoxia
signature identified in this study, as well as predicted
miRNAs might be helpful to detect the hypoxic state of
cancer cells. Hypoxia is common in majority of
malignant tumors and an attractive therapeutic target.
As hypoxia targeted treatment are effective in patients
with the most hypoxic tumors, hypoxic signature might
be useful for developing proper treatment, such as
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engineered oncolytic viruses that could be utilized to
control or regulate the biological interactions
responsible for the functioning or malfunctioning of
cancer cells during hypoxial®?.
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