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ABSTRACT

Background: Cystic fibrosis is the most common heredity disease among the
Caucasian population. More than 350 known pathogenic variations in the
CFTR gene (NM_000492.4) cause CF. Herein, we report the outcome of our

investigation in two unrelated Iranian families with CF patients.

Methods: We conducted phenotypic examination, segregation, linkage
analysis, and CFTR gene sequencing to define causative mutations.

Results: We found two novel mutations in the present study. The first one
was a deletion causing frameshift, c.299delT p.(Leul00Profs*7), and the
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mutation findings.

second one was a missense mutation, ¢.1857G>T, at nucleotide binding
domain 1 of the CFTR protein. Haplotype segregation data supported our new

Conclusion: Findings of this study expand the spectrum of CFTR pathogenic
variations and can improve prenatal diagnosis and genetic counseling for CF.
405. DOI: 10.52547/ibj.3713
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INTRODUCTION

Cystic fibrosis (OMIM: #219700), a congenital

disease with an autosomal recessive mode of

inheritance, is caused by mutations in the CFTR
gene SOMIM: *602421; cytogenetic location:
7931.2)M. These mutations affect the function of the
CFTR protein in ion channels in epithelial tissues,
leading to unusually viscous secretions. This
abnormality gives rise to obstruction in lung airways
and pancreatic ducts. Individuals with CFTR mutations
have shown susceptibility to bacterial infections!*!.

CF is the most frequent fatal autosomal recessive
heredity disease among the Caucasian population with
an average incidence of 1 out of 3,500 individuals in
Europe[4. Besides, one in every 2,500, 3,600, and
4,000 children in Australia, Canada, and the US are
respectively born with CF®. So far, CF Mutation
Database has reported more than 2,000 CFTR gene

List of Abbreviations:

variations, of which only 352 have been verified to be
pathogenic.

New advances in genetic technology and availability
of powerful predictive tools have accelerated the
findings of disease-causing mutations, including
alterations in the CFTR gene in CF patients and
carriers®, Furthermore, the discovery of novel variants
supplements the information about the spectrum of the
CFTR mutations. These findings are essential for
geneticists and clinicians working on CF diagnosis,
prevention, and treatment, as well as for those seeking
for new therapeutic approaches. Currently, there are
powerful  tools for the identification and
characterization of newly discovered mutations or
variants. Both in silico and molecular findings may be
necessary to verify a mutation as pathogenic or
nonpathogenic.

Consanguineous marriage plays a crucial role in the
relatively high incidence of CF in Iran, as observed in

ACMG, American College of Medical Genetics; NBD1, nucleotide-binding domain 1; CF, cystic fibrosis; CFTR, cystic fibrosis
transmembrane conductance regulator; NBD, nucleotide-binding domain; STR, short tandem repeat;
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several other autosomal recessive disordersl” ™. While
CF is believed to be rare in Iran, an earlier
investigation has suggested that it might be an
underdiagnosed disorder in the countryt*?.

The present study aimed to investigate nine
individuals from two unrelated families who had
affected children with CF. To this end, we performed
phenotypic examination, pedigree study, and genetic
analysis by Sanger sequencing and haplotyping using
the CFTR-linked STR markers.

MATERIALS AND METHODS

Subjects

Two Iranian families with children suspected of
being affected with CF were referred to Dr. Zeinali’s
Medical Genetic Lab., Kawsar Human Genetics
Research Center (KHGRC) for CFTR gene analysis.
Each family had four members. The affected child who
belonged to the family | was a four-month-old male
infant at the time of counseling. The affected child
from family Il was a female infant who had died at two
months of age. Peripheral blood samples were
collected in EDTA-containing tubes.

DNA extraction and genotyping

DNA samples were extracted by salting-out
method!™®]. The concentration of the isolated DNA was
measured by Nanodrop spectrophotometry (Thermo
Fisher Scientific, Foster City, CA, USA). Genetic
analysis of the DNA samples was performed using
direct sequencing of the CFTR gene exons. Primers for
sequencing were designed to target all exons, and 200
flanking intronic regions were used based on a
previously reported method™. Sequences of primers
are available upon request. DNA sequencing was
carried out wusing BigDye Terminator Cycle
Sequencing Kit (Thermo Fisher Scientific) and
analyzed on 3130/XL Genetic Analyzer. By usin?
bioinformatics tools such as MutationTaster™™®
PolyPhen-21®!, cADD™, FATHMM! !, SIFTI™ and
PROVEANPY, we investigated the pathogenicity of
the detected variations, including novel variants®?".
Mutation nomenclature was compiled in accordance
with the Human Genome Variation Society
guidelines®?. Novelty and pathogenicity of the
mutations were also investigated in the Human Gene
Mutation  (http://www.  hgmd.cf.ac.uk/ac/all.php),
Clinical and Functional Translation of CFTR
(http://cftr2.org), and CF mutation (http://www.genet.
sickkids.on.ca) databases, and also in literature review.
The protein tertiar;/ structure was predicted by Swiss-
MODEL software!?4,

Iran. Biomed. J. 26 (5): 398-405

Short tandem repeat-based homozygosity mapping

We examined the pattern of inheritance by CFTR-
linked STR markers using GT Hapscreen CFTR kit
(Genetek Biopharma, Berlin, Germany). As per the kit
user manual, we drew and interpreted each person’s
haplotype. We also performed multiplex PCR using the
GT Hapscreen CFTR kit, and the fragments were
analyzed on the ABI 3130/XL Genetic Analyzer. The
resulting files were converted to PDF using
GeneMapper IDX 1.5, and fragment sizes were used to
draw haplotypes according to the manufacturer’s user
manual.

RESULTS

Clinical presentation
Family I

The family had been referred to Kawsar Human
Genetics Research Center (KHGRC) for prenatal
diagnosis. The parents were not consanguineous (Fig.
1A). The proband’s (II-1) sweat test was positive for
CF. Also, the proband manifested classic CF-related
symptoms, i.e. salty-tasting skin from birth and greasy
stools. The elastase activity in his stool was severely
insufficient (50 pg/g), and microscopic analysis of the
stool had revealed many fatty acid droplets. At the time
of our examination, the infant had already surgical
treatment for ileal atresia. The infant’s father, mother,
and sister displayed no sign of CF. Haplotyping and
mutation analysis of proband’s sister (II-2) indicated
that she is carrier of mutation inherited from her father.

Family 11

A consanguineous couple of Kurdish origin (Fig. 1B)
was referred to HGRC for prenatal diagnosis. The
mother, a 29-year-old woman, was at 12 weeks of
gestation at the time of blood sampling. The deceased
female child (i.e., 112, Fig. 1B) had been affected with
CF as the positive sweat test confirmed the diagnosis.
The family had an 11-year-old son with no CF-
associated complications. He also participated in this
study.

Sanger sequencing and identification of two novel
variants in the CFTR gene

The analysis of sequencing revealed three mutations
in the studied participants. In family I, we identified
two mutations that one of them was a previouslé/
described  pathogenic  deletion,  ¢.1911delG!**]
p.(GIn637Hisfs *26), in exon 13 of the proband’s
sample. His father and sister were heterozygous
for this mutation. Another heterozygote mutation,
€.299delT p.(Leul00 Profs*7), was detected in exon 4
of the proband. This mutation shared by his mother

399


http://www/
http://cftr2.org/
http://www.genet/
http://dx.doi.org/10.52547/ibj.3713
https://dor.isc.ac/dor/20.1001.1.1028852.2022.26.5.4.3
https://ibj.pasteur.ac.ir/article-1-3713-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-10-23 ]

[ DOR: 20.1001.1.1028852.2022.26.5.4.3 ]

[ DOI: 10.52547/ibj.3713]

Identification of Two Novel CFTR Mutations

Hosseini Nami et al.

Famiy |

(A)

SU44
Su1ar
Sua9
suer
SDa3
SDas
SD9s
SO 195

(B)

SU244
Su 1
SUas
Susr
SO 303
SD &6
S04938
So1

a7

Family

&1
EHT‘_D@

95

R

Su244

Sut

a7

Sus9
Sus9

SD3.
So6

03

5

SD98

SO 1

95

Fig. 1. Pedigree of two families with novel CFTR variants. (A) In family I, the 11, 111, and 112 share the same haplotype and
mutation. The 111 shares a similar haplotype with 12, as well. Therefore, the defective haplotypes in the 112 have come from the father
even if we do not show the mutation. (B) In family I, 11 and 12 are cousins and share the same mutation and haplotype. Their affected
child (112) has died, and the other two children are carriers based on mutation and haplotype results. 111 has received the defective

haplotype from the mother and 113 from the father.

confirmed to be a novel mutation associated with the
patient's phenotype, since we did not find any record of
€.299delT mutation in the CF Mutation Databases or
the literature. Therefore, this mutation can be regarded
as a novel genetic variation.

The T deletion at nucleotide 299 (Fig. 2A) causes a
frameshift and changes the amino acids (aa) frames,
p.(Leul00Profs*7). The frameshift caused by this
deletion led to substituting the isoleucine codon with a
stop codon at aa 106 (p. 1106*). MutationTaster
predicted this variant as deleterious. No other mutation
in other exons merited the same criteria. All pedigree

members in family Il, who participated in the study,
carried a heterozygous mutation ¢.1857G>T (Fig. 2B),
located in exon 13. This missense mutation caused the
substitution of leucine to phenylalanine at position 619
(p.Leub619Phe). There is no previous report on
€.1857G>T mutation in the CF Mutation Databases
and literature; therefore, it is novel. The in silico tools
predicted this mutation to be damaging and disease-
causing, and its CADD score was 23.0. This mutation
is in the NBD1 of the CFTR (Fig. 3). Also, CFTR-
linked STR markers showed that the parents shared
the same haplotype and none of the healthy members,
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Fig. 2. Result of Sanger sequencing of studied probands. The CFTR variant of (A) ¢.299delT p.(LeulO0Profs*7) and (B)

€.1857G>T p.L619F were found in family I and 11, respectively.
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Fig. 3. Exon structure of the CFTR gene and domain structure of the CFTR protein. The mutation hot spot in exon 13. The mutation
point is indicated with red line. The position of variants ¢.299delT p.(Leu100Profs*7) and ¢.1857G>T (p.L619F) is shown in the three-

dimensional structure of CFTR protein. RD, regulatory domain.

including the carrier infant, was homozygote for this
haplotype (Fig. 1B). Thus, the segregation analysis of
the STR markers suggests an association of ¢.1857G>T
mutation with CF phenotypes in the deceased
infant. The Swiss-MODEL predicted the three-
dimensional structure of the CFTR protein (Fig. 4).
This amino acid substitution in position 619 might
affect the stability of the protein.

Extracellular

DISCUSSION

By investigating molecular defects causing CF in our
patients, we found two novel mutations, ¢.299delT and
€.1856G>T, in two unrelated families. There is no
previous report on these two mutations in the
CFTR databases, Human Gene Mutation Database,
and literature; thus, they can be regarded as novel

Fig. 4. The CFTR protein tertiary structure predicted by Swiss-MODEL software. Different structures caused by amino acid changes
are shown in position 619 of CFTR. On the right top the wild-type leucine and on the right bottom, the mutant phenylalanines are

shown.
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Fig. 5. Conservation score of CFTR protein by ConSurf software. Conservation score of the amino acids (A) 51-100 and (B) 601-
650 (B); red arrows indicate the position of 100" and 619™ amino acid, respectively.

mutations. Results from this study expand the mutation
spectrum of CF disease and will be of great help for
prenatal diagnosis and carrier detection of this disorder
worldwide.

The affected child in our first case (family 1) had
typical CF symptoms and was compound heterozygote
for ¢.299delT p.(Leul00Profs*7), and c¢.1911delG
(p.GIn637Hisfs*26) mutations. The novel
p.(Leul00Profs*7) mutation was located in the first
membrane spanning domain of the CFTR protein and a
CFTR gene mutation hotspot®®?”? (Fig. 3). The
mutation causes a six-amino-acid alteration, and a
termination codon follows the frameshift caused by
this deletion. The nonsense-mediated mMRNA decay
targets the transcribed mRNA after this premature
termination®®). This process results in the loss of CFTR
protein activity and is consistent with the patient's
classical CF phenotypes. The ¢.299delT p.(Leul00
Profs*7) mutation is classified as pathogenic based on
the ACMG guidelines because it meets PVS1, PM2,
PM3, and PP3 criteria. It has formerly been classified
as class | mutation, as well®.. In vitro analysis can
verify the effect of this variant in CF. The patient also
carried a second mutation, a previously known
deletion, the ¢.1911delG (p.GIn637Hisfs*26) in exon
13. This mutation has been reported in patients with
pancreatic insufficiency and pathological lung
conditions®**".  The ¢.1911delG, legacy name
€.2043delG, is a common mutation in the north of Iran,
where the patients are originally from™!. Furthermore,
several studies have reported this mutation in a number
of areas with geographical proximity to Iran, e.g.
Russia®*! and the Middle Eastern countries such as

Bahrain®,  Turkey™*%  Lebanon®", and Saudi
Arabial®®,

402

We found a second novel missense mutation in
another family having ¢.1857G>T (p.L619F) mutation.
This mutation has a length of 58 nucleotides and is
positioned in a mutation hot spot in exon 13, which
harbors 15 mutations (12 missense mutations and three
deletions) as reported in the CF Mutation Database so
far. The mutation is also close to another nonsense
mutation hotspot region in exon 13. The altered amino
acid is placed in the NBD1 of CFTR protein®". The
NBDL1 is a key player in the CFTR gating control
because of its interaction with ATP¥®*Y. This mutation
introduces an amino acid with different properties,
affecting the structural stability and gating function of
the protein. Also, the wild-type amino acid, which is
leucine and the mutant amino acid, phenylalanine,
differs in size. The mutant residue is bigger than the
wild type; therefore, its bulky side chain might lead to
bumps (Fig. 4). H-loop is a conserved structure® in
CFTR protein, which is involved in ATP
recognition*?. The ¢.1857G>T substitution is located
seven amino acids downstream of h-loop. All the in
silico tools predicted this mutation to be damaging, and
based on the ACMG guidelines, this mutation is likely
pathogenic as it meets PP1, PP2, PP5, and PP3 criteria.
In vitro as well as in vivo confirmatory studies can
assess the pathogenic effect of c. 1857G>T in CF
patients.

We may here note another adjacent mutation,
c.1856T>C (p.L619S), detected in other studiest .
This mutation also changes leucine at position 619 and
has been found in a patient with pancreatic
insufficiency®®.  Furthermore, when ¢.1856T>C
mutation was introduced in mammalian HEK 293
cells. The transformed cells displayed no CI" channel
activity in the electrode voltage clam test. The mutated

Iran. Biomed. J. 26 (5): 398-405
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cells failed to process the CFTR protein correctly; as a
result, the protein was mislocalized*!!. Moreover, nine
other mutations approximate to this mutation Saa 601-
619) led to CFTR protein processing defects*!. This
high number of pathogenic mutations is consistent with
the highly conserved amino acid sequences
neighboring the aa position 619 between various
species (Fig. 5) and highlights the crucial role of this
region, particularly the leucine at position 619 in
protein function.

The infant family Il had been diagnosed with CF and
died very early at two months of age. Although a small
population makes it challenging to make a genotype
and phenotype connection, haplotyping indicated that
€.1857G>T is probably the cause of CF in the infant.
Therefore, we can deduce that the mutated allele
segregates with a specific haplotype using CFTR
linked STR markers.

In the present study, we discovered two novel
mutations (¢.299delT and ¢.1857G>T) and another
missense mutation, ¢.1911delG of CF disease.
Introducing these two novel mutations to the CFTR
mutation spectrum will help genetic specialists and
clinicians better diagnose CF patients and provide
more effective medical care. Applying haplotyping will
increase the accuracy of findings, particularly in
families with few children or consanguinity.
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