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ABSTRACT 

 

Background: Cystic fibrosis is the most common heredity disease among the 
Caucasian population. More than 350 known pathogenic variations in the 
CFTR gene (NM_000492.4) cause CF. Herein, we report the outcome of our 
investigation in two unrelated Iranian families with CF patients.  
Methods: We conducted phenotypic examination, segregation, linkage 
analysis, and CFTR gene sequencing to define causative mutations.  
Results: We found two novel mutations in the present study. The first one 
was a deletion causing frameshift, c.299delT p.(Leu100Profs*7), and the 
second one was a missense mutation, c.1857G>T, at nucleotide binding 
domain 1 of the CFTR protein. Haplotype segregation data supported our new 
mutation findings.  
Conclusion: Findings of this study expand the spectrum of CFTR pathogenic 
variations and can improve prenatal diagnosis and genetic counseling for CF. 
DOI: 10.52547/ibj.3713 
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INTRODUCTION 

 

ystic fibrosis (OMIM: #219700), a congenital 

disease with an autosomal recessive mode of 

inheritance, is caused by mutations in the CFTR 

gene (OMIM: *602421; cytogenetic location: 

7q31.2)
[1]

. These mutations affect the function of the 

CFTR protein in ion channels in epithelial tissues, 

leading to unusually viscous secretions. This 

abnormality gives rise to obstruction in lung airways 

and pancreatic ducts. Individuals with CFTR mutations 

have shown susceptibility to bacterial infections
[2,3]

.  

CF is the most frequent fatal autosomal recessive 

heredity disease among the Caucasian population with 

an average incidence of 1 out of 3,500 individuals in 

Europe
[4]

. Besides, one in every 2,500, 3,600, and 

4,000 children in Australia, Canada, and the US are 

respectively born with CF
[5]

. So far, CF Mutation 

Database has reported more than 2,000 CFTR gene 

variations, of which only 352 have been verified to be 

pathogenic.  

New advances in genetic technology and availability 

of powerful predictive tools have accelerated the 

findings of disease-causing mutations, including 

alterations in the CFTR gene in CF patients and 

carriers
[6]

. Furthermore, the discovery of novel variants 

supplements the information about the spectrum of the 

CFTR mutations. These findings are essential for 

geneticists and clinicians working on CF diagnosis, 

prevention, and treatment, as well as for those seeking 

for new therapeutic approaches. Currently, there are 

powerful tools for the identification and 

characterization of newly discovered mutations or 

variants. Both in silico and molecular findings may be 

necessary to verify a mutation as pathogenic or 

nonpathogenic.  

Consanguineous marriage plays a crucial role in the 

relatively high incidence of CF in Iran, as observed in 
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several other autosomal recessive disorders
[7-11]

. While 

CF is believed to be rare in Iran, an earlier 

investigation has suggested that it might be an 

underdiagnosed disorder in the country
[12]

.  

The present study aimed to investigate nine 

individuals from two unrelated families who had 

affected children with CF. To this end, we performed 

phenotypic examination, pedigree study, and genetic 

analysis by Sanger sequencing and haplotyping using 

the CFTR-linked STR markers. 

 

 

MATERIALS AND METHODS 
 

Subjects 
Two Iranian families with children suspected of 

being affected with CF were referred to Dr. Zeinali’s 

Medical Genetic Lab., Kawsar Human Genetics 

Research Center (KHGRC) for CFTR gene analysis. 

Each family had four members. The affected child who 

belonged to the family I was a four-month-old male 

infant at the time of counseling. The affected child 

from family II was a female infant who had died at two 

months of age. Peripheral blood samples were 

collected in EDTA-containing tubes. 
 

DNA extraction and genotyping 
DNA samples were extracted by salting-out 

method
[13]

. The concentration of the isolated DNA was 

measured by Nanodrop spectrophotometry (Thermo 

Fisher Scientific, Foster City, CA, USA). Genetic 

analysis of the DNA samples was performed using 

direct sequencing of the CFTR gene exons. Primers for 

sequencing were designed to target all exons, and 200 

flanking intronic regions were used based on a 

previously reported method
[14]

. Sequences of primers 

are available upon request. DNA sequencing was 

carried out using BigDye Terminator Cycle 

Sequencing Kit (Thermo Fisher Scientific) and 

analyzed on 3130/XL Genetic Analyzer. By using 

bioinformatics tools such as MutationTaster
[15]

, 

PolyPhen-2
[16]

, CADD
[17]

, FATHMM
[18]

, SIFT
[19]

, and 

PROVEAN
[20]

, we investigated the pathogenicity of 

the detected variations, including novel variants
[21]

. 

Mutation nomenclature was compiled in accordance 

with the Human Genome Variation Society 

guidelines
[22]

. Novelty and pathogenicity of the 

mutations were also investigated in the Human Gene 

Mutation (http://www. hgmd.cf.ac.uk/ac/all.php), 

Clinical and Functional Translation of CFTR 

(http://cftr2.org), and CF mutation (http://www.genet. 

sickkids.on.ca) databases, and also in literature review. 

The protein tertiary structure was predicted by Swiss-

MODEL software
[23,24]

. 
 

Short tandem repeat-based homozygosity mapping 
We examined the pattern of inheritance by CFTR-

linked STR markers using GT Hapscreen CFTR kit 

(Genetek Biopharma, Berlin, Germany). As per the kit 

user manual, we drew and interpreted each person’s 

haplotype. We also performed multiplex PCR using the 

GT Hapscreen CFTR kit, and the fragments were 

analyzed on the ABI 3130/XL Genetic Analyzer. The 

resulting files were converted to PDF using 

GeneMapper IDX 1.5, and fragment sizes were used to 

draw haplotypes according to the manufacturer’s user 

manual. 
 
 

RESULTS 
 

Clinical presentation 

Family I 
The family had been referred to Kawsar Human 

Genetics Research Center (KHGRC) for prenatal 

diagnosis. The parents were not consanguineous (Fig. 

1A). The proband’s (II-1) sweat test was positive for 

CF. Also, the proband manifested classic CF-related 

symptoms, i.e. salty-tasting skin from birth and greasy 

stools. The elastase activity in his stool was severely 

insufficient (50 µg/g), and microscopic analysis of the 

stool had revealed many fatty acid droplets. At the time 

of our examination, the infant had already surgical 

treatment for ileal atresia. The infant’s father, mother, 

and sister displayed no sign of CF. Haplotyping and 

mutation analysis of proband’s sister (II-2) indicated 

that she is carrier of mutation inherited from her father.  

 

Family II 
A consanguineous couple of Kurdish origin (Fig. 1B) 

was referred to HGRC for prenatal diagnosis. The 

mother, a 29-year-old woman, was at 12 weeks of 

gestation at the time of blood sampling. The deceased 

female child (i.e., II2, Fig. 1B) had been affected with 

CF as the positive sweat test confirmed the diagnosis. 

The family had an 11-year-old son with no CF-

associated complications. He also participated in this 

study.  

 

Sanger sequencing and identification of two novel 

variants in the CFTR gene 
The analysis of sequencing revealed three mutations 

in the studied participants. In family I, we identified 

two mutations that one of them was a previously 

described pathogenic deletion, c.1911delG
[25]

 

p.(Gln637Hisfs *26), in exon 13 of the proband’s 

sample. His father and sister were heterozygous  

for this mutation. Another heterozygote mutation, 

c.299delT p.(Leu100 Profs*7), was detected in exon 4 

of  the  proband.  This  mutation  shared  by his mother  
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Fig. 1. Pedigree of two families with novel CFTR variants. (A) In family I, the I1, II1, and II2 share the same haplotype and 

mutation. The II1 shares a similar haplotype with I2, as well. Therefore, the defective haplotypes in the II2 have come from the father 

even if we do not show the mutation. (B) In family II, I1 and I2 are cousins and share the same mutation and haplotype. Their affected 

child (II2) has died, and the other two children are carriers based on mutation and haplotype results. II1 has received the defective 

haplotype from the mother and II3 from the father. 

 

 

confirmed to be a novel mutation associated with the 

patient's phenotype, since we did not find any record of 

c.299delT mutation in the CF Mutation Databases or 

the literature. Therefore, this mutation can  be regarded 

as a novel genetic variation. 

The T deletion at nucleotide 299 (Fig. 2A) causes a 

frameshift and changes the amino acids (aa) frames, 

p.(Leu100Profs*7). The frameshift caused by this 

deletion led to substituting the isoleucine codon with a 

stop codon at aa 106 (p. I106*). MutationTaster 

predicted this variant as deleterious. No other mutation 

in other exons merited the same criteria. All pedigree 

members in family II, who participated in the study, 

carried a heterozygous mutation c.1857G>T (Fig. 2B), 

located in exon 13. This missense mutation caused the 

substitution of leucine to phenylalanine at position 619 

(p.Leu619Phe). There is no previous report on 

c.1857G>T mutation in the CF Mutation Databases 

and literature; therefore, it is novel. The in silico tools 

predicted this mutation to be damaging and disease-

causing, and its CADD score was 23.0. This mutation 

is in the NBD1 of the CFTR (Fig. 3). Also, CFTR-

linked STR markers showed that the parents shared 

the same  haplotype  and  none of the healthy members,  

 

 
 

  Fig. 2. Result of Sanger sequencing of studied probands. The CFTR variant of (A) c.299delT p.(Leu100Profs*7) and (B) 

c.1857G>T p.L619F were found in family I and II, respectively. 
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Fig. 3. Exon structure of the CFTR gene and domain structure of the CFTR protein. The mutation hot spot in exon 13. The mutation 

point is indicated with red line. The position of variants c.299delT p.(Leu100Profs*7) and c.1857G>T (p.L619F) is shown in the three-

dimensional structure of CFTR protein. RD, regulatory domain. 

 

 

including the carrier infant, was homozygote for this 

haplotype (Fig. 1B).  Thus, the segregation analysis of 

the STR markers suggests an association of c.1857G>T 

mutation  with   CF  phenotypes  in  the  deceased  

infant. The Swiss-MODEL predicted the three-

dimensional structure of the CFTR protein (Fig. 4). 

This amino acid substitution in position 619 might 

affect the stability of the protein. 

 

 

 

 

 

 

 

DISCUSSION 
 

By investigating molecular defects causing CF in our 

patients, we found two novel mutations, c.299delT and 

c.1856G>T, in two unrelated families. There is no 

previous report on these two mutations in the  

CFTR databases, Human Gene Mutation Database,  

and literature;  thus,  they  can  be  regarded   as   novel  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The CFTR protein tertiary structure predicted by Swiss-MODEL software. Different structures caused by amino acid changes 

are shown in position 619 of CFTR. On the right top the wild-type leucine and on the right bottom, the mutant phenylalanines are 

shown. 
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Fig. 5. Conservation score of CFTR protein by ConSurf software. Conservation score of the amino acids (A) 51-100 and (B) 601-

650 (B); red arrows indicate the position of 100th and 619th amino acid, respectively. 

 

 
 

mutations. Results from this study expand the mutation 

spectrum of CF disease and will be of great help for 

prenatal diagnosis and carrier detection of this disorder 

worldwide. 

The affected child in our first case (family I) had 

typical CF symptoms and was compound heterozygote  

for c.299delT p.(Leu100Profs*7), and c.1911delG 

(p.Gln637Hisfs*26) mutations. The novel 

p.(Leu100Profs*7) mutation   was  located  in  the  first 

membrane spanning domain of the CFTR protein and a 

CFTR gene mutation hotspot
[26,27]

 (Fig. 3). The 

mutation causes a six-amino-acid alteration, and a 

termination codon follows the frameshift caused by 

this deletion. The nonsense-mediated mRNA decay 

targets the transcribed mRNA after this premature 

termination
[28]

. This process results in the loss of CFTR 

protein activity and is consistent with the patient's 

classical CF phenotypes. The c.299delT p.(Leu100 

Profs*7) mutation is classified as pathogenic based on 

the ACMG guidelines because it meets PVS1, PM2, 

PM3, and PP3 criteria. It has formerly been classified 

as class I mutation, as well
[29]

. In vitro analysis can 

verify the effect of this variant in CF. The patient also 

carried a second mutation, a previously known 

deletion, the c.1911delG (p.Gln637Hisfs*26) in exon 

13. This mutation has been reported in patients with 

pancreatic insufficiency and pathological lung 

conditions
[30,31]

. The c.1911delG, legacy name 

c.2043delG, is a common mutation in the north of Iran, 

where the patients are originally from
[31]

. Furthermore, 

several studies have reported this mutation in a number 

of areas with geographical proximity to Iran, e.g. 

Russia
[32,33]

 and the Middle Eastern countries such as 

Bahrain
[34]

, Turkey
[35,36]

, Lebanon
[37]

, and Saudi 

Arabia
[38]

.  

We found a second novel missense mutation in 

another family having c.1857G>T (p.L619F) mutation. 

This mutation has a length of 58 nucleotides and is 

positioned in a mutation hot spot in exon 13, which 

harbors 15 mutations (12 missense mutations and three 

deletions) as reported in the CF Mutation Database so 

far. The mutation is also close to another nonsense 

mutation hotspot region in exon 13. The altered amino 

acid is placed in the NBD1 of CFTR protein
[39]

. The 

NBD1 is a key player in the CFTR gating control 

because of its interaction with ATP
[40,41]

. This mutation 

introduces an amino acid with different properties, 

affecting the structural stability and gating function of 

the protein. Also, the wild-type amino acid, which is 

leucine and the mutant amino acid, phenylalanine, 

differs in size. The mutant residue is bigger than the 

wild type; therefore, its bulky side chain might lead to 

bumps (Fig. 4). H-loop is a conserved structure
[40]

 in 

CFTR protein, which is involved in ATP 

recognition
[42]

. The c.1857G>T substitution is located 

seven amino acids downstream of h-loop. All the in 
silico tools predicted this mutation to be damaging, and 

based on the ACMG guidelines, this mutation is likely 

pathogenic as it meets PP1, PP2, PP5, and PP3 criteria. 

In vitro as well as in vivo confirmatory studies can 

assess the pathogenic effect of c. 1857G>T in CF 

patients. 

We may here note another adjacent mutation, 

c.1856T>C (p.L619S), detected in other studies
[43-45]

. 

This mutation also changes leucine at position 619 and 

has been found in a patient with pancreatic 

insufficiency
[43]

. Furthermore, when c.1856T>C 

mutation was introduced in mammalian HEK 293 

cells. The transformed cells displayed no Cl
-
 channel 

activity in the electrode voltage clam test. The mutated 

A 

B (B) 
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cells failed to process the CFTR protein correctly; as a 

result, the protein was mislocalized
[44]

. Moreover, nine 

other mutations approximate to this mutation (aa 601-

619) led to CFTR protein processing defects
[45]

. This 

high number of pathogenic mutations is consistent with 

the highly conserved amino acid sequences 

neighboring the aa position 619 between various 

species (Fig. 5) and highlights the crucial role of this 

region, particularly the leucine at position 619 in 

protein function.  

The infant family II had been diagnosed with CF and 

died very early at two months of age. Although a small 

population makes it challenging to make a genotype 

and phenotype connection, haplotyping indicated that 

c.1857G>T is probably the cause of CF in the infant. 

Therefore, we can deduce that the mutated allele 

segregates with a specific haplotype using CFTR 

linked STR markers.  

In the present study, we discovered two novel 

mutations (c.299delT and c.1857G>T) and another 

missense mutation, c.1911delG of CF disease. 

Introducing these two novel mutations to the CFTR 

mutation spectrum will help genetic specialists and 

clinicians better diagnose CF patients and provide 

more effective medical care. Applying haplotyping will 

increase the accuracy of findings, particularly in 

families with few children or consanguinity. 
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