Volume 26, Issue 4 (7-2022)                   IBJ 2022, 26(4): 313-323 | Back to browse issues page

PMID: 36000264

XML Print

Background: Autophagy induction has been shown to differ in magnitude depending on the mycobacterial species. However, few studies have investigated the specific autophagic capacity of different Mycobacterium tuberculosis (Mtb) strains in alveolar epithelial cells (ATs). This study aimed to elucidate the host autophagic response to different Mtb strains in ATs responsible for TB in the capital of Iran, Tehran.  
Methods: A549 cells were infected with three different Mtb clinical isolates (Beijing, NEW1, and CAS1/Delhi) and the reference strain H37Rv. Following RNA extraction, the expression of eight ATG genes, four mycobacterial genes, and three miRNAs was evaluated using quantitative RT-PCR.  
Results: The results revealed that all four strains influenced the autophagy pathway in various ways at different magnitudes. The Beijing and H37Rv strains could inhibit autophagosome formation, whereas the CAS and NEW1 strains induced autophagosome formation. The expression of genes involved in the fusion of autophagosomes to lysosomes (LAMP1) indicated that all the studied strains impaired the autophagolysosomal fusion; this result is not unexpected as Mtb can block the autophagolysomal fusion. In addition, the Beijing and H37RV strains prevented the formation of autophagic vacuoles, besides mycobacterial targeting of lysosomes and protease activity.
Conclusion: This preliminary study improved our understanding of how Mtb manages to overcome the host immune system, such as autophagy, and evaluated the genes used by specific strains during this process. Further studies with a large number of Mtb strains, encompassing the other main Mtb lineages, are inevitable.

1. Tao H, Chen F, Liu H, Hu Y, Wang Y, Li H. Wnt/β-catenin signaling pathway activation reverses gemcitabine resistance by attenuating Beclin1-mediated autophagy in the MG63 human osteosarcoma cell line. Molecular medicine reports 2017; 16(2): 1701-1706. [DOI:10.3892/mmr.2017.6828]
2. Santovito D, Egea V, Bidzhekov K, Natarelli L, Mourão A, Blanchet X, Wichapong K, Aslani M, Brunßen C, Horckmans M. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Science translational medicine 2020; 12(546): eaaz2294. [DOI:10.1126/scitranslmed.aaz2294]
3. Zhang W, Zhang S, Guan W, Huang Z, Kong J, Huang C, Wang H, Yang S. Poly C Binding Protein 1 Regulates p62/SQSTM1 mRNA Stability and Autophagic Degradation to Repress Tumor Progression. Frontiers in genetics 2020; 11: 930. [DOI:10.3389/fgene.2020.00930]
4. Demishtein A, Fraiberg M, Berko D, Tirosh B, Elazar Z, Navon A. SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy 2017; 13(10): 1697-1708. [DOI:10.1080/15548627.2017.1356549]
5. Liu Q, Luo T, Li J, Mei J, Gao Q. Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction. Journal of antimicrobial chemotherapy 2013; 68(5): 1097-1103. [DOI:10.1093/jac/dks509]
6. Sha Z, Schnell HM, Ruoff K, Goldberg A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. The Journal of cell biology 2018; 217(5): 1757-1776. [DOI:10.1083/jcb.201708168]
7. Gjyshi O, Flaherty S, Veettil MV, Johnson KE, Chandran B, Bottero V. Kaposi's sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1. Journal of virology 2015; 89(4): 2268-2286. [DOI:10.1128/JVI.02742-14]
8. Pascall JC, Rotondo S, Mukadam AS, Oxley D, Webster J, Walker SA, Piron J, Carter C, Ktistakis NT, Butcher GW. The immune system GTPase GIMAP6 interacts with the Atg8 homologue GABARAPL2 and is recruited to autophagosomes. PLoS One 2013; 8(10): e77782. [DOI:10.1371/journal.pone.0077782]
9. Sun J, Wei S, Zhang Y, Li J. Protective Effects of Astragalus Polysaccharide on Sepsis-Induced Acute Kidney Injury. Analytical cellular pathology 2021; 2021: 7178253. [DOI:10.1155/2021/7178253]
10. Kang YA, Sanalkumar R, O'Geen H, Linnemann AK, Chang CJ, Bouhassira EE, Farnham PJ, Keles S, Bresnick EH. Autophagy driven by a master regulator of hematopoiesis. Molecular and cellular biology 2012; 32(1): 226-239. [DOI:10.1128/MCB.06166-11]
11. Paroha R, Chourasia R, Mondal R, Chaurasiya SK. PknG supports mycobacterial adaptation in acidic environment. Molecular and cellular biochemistry 2018; 443(1): 69-80. [DOI:10.1007/s11010-017-3211-x]
12. Solans L, Aguiló N, Samper S, Pawlik A, Frigui W, Martín C, Brosch R, Gonzalo-Asensio J. A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component. Infection and immunity 2014; 82(8): 3446-3456. [DOI:10.1128/IAI.01824-14]
13. Iona E, Pardini M, Mustazzolu A, Piccaro G, Nisini R, Fattorini L, Giannoni F. Mycobacterium tuberculosis gene expression at different stages of hypoxia-induced dormancy and upon resuscitation. Journal of microbiology 2016; 54(8): 565-572. [DOI:10.1007/s12275-016-6150-4]
14. Li G, Zhang J, Guo Q, Wei J, Jiang Y, Zhao X, Zhao L-l, Liu Z, Lu J, Wan K. Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates. The Journal of antibiotics 2015; 68(7): 431-435. [DOI:10.1038/ja.2015.9]
15. Yang L-h, Wang S-l, Tang L-l, Liu B, Wang L-l, Wang Z-y, Zhou M-t, Chen B-c. Universal stem-loop primer method for screening and quantification of microRNA. PloS one 2014; 9(12): e115293. [DOI:10.1371/journal.pone.0115293]
16. Chen P, Chen F, Lei J, Li Q, Zhou B. Activation of the miR-34a-Mediated SIRT1/mTOR Signaling Pathway by Urolithin A Attenuates d-Galactose-Induced Brain Aging in Mice. Neurotherapeutics 2019; 16(4): 1269-1282. [DOI:10.1007/s13311-019-00753-0]
17. Wu L, Cai C, Wang X, Liu M, Li X, Tang H. MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Letters 2011; 585(9): 1322-1330. [DOI:10.1016/j.febslet.2011.03.067]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.