Volume 26, Issue 2 (3-2022)                   IBJ 2022, 26(2): 116-123 | Back to browse issues page

PMID: 34875820

XML Print

Background: In the present study, a tissue engineered silk fibroin (SF) scaffold containing simvastatin-loaded silk fibroin nanoparticles (SFNPs) were used to stimulate the regeneration of the defected bone.
Methods: At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the scaffold and the NPs were characterized in terms of physicochemical properties and the ability to release the simvastatin small molecule.
Results: The results exhibited that the SF scaffold had a porous structure suitable for releasing the small molecule and inducing the proliferation and attachment of osteoblast cells. SFNPs containing simvastatin had spherical morphology and were 174 ± 4 nm in size with -24.5 zeta potential. Simvastatin was also successfully encapsulated within the SFNPs with 68% encapsulation efficiency. Moreover, the small molecule revealed a sustained release profile from the NPs during 35 days. The results obtained from the in vitro cell-based studies indicated that simvastatin-loaded SFNPs embedded in the scaffold had acceptable capacity to promote the proliferation and alkaline phosphatase production of osteoblast cells while inducing osteogenic matrix precipitation.
Conclusion: The SF scaffold containing simvastatin-loaded SFNPs could have a good potential to be used as a bone tissue-engineered construct.

1. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress 2009; 25(6): 1539-1560. [DOI:10.1002/btpr.246]
2. Laurencin CT, Khan Y, Kofron M, El-Amin S, Botchwey E, Yu X, Cooper Jr J A. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective. Clinical orthopaedics and related research 2006; 447: 221-236.
3. Lee S-H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced drug delivery reviews 2007; 59(4-5): 339-359. [DOI:10.1016/j.addr.2007.03.016]
4. Laurencin CT, Ashe KM, Henry N, Kan HM, Lo KW-H. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug discovery today 2014; 19(6): 794-800. [DOI:10.1016/j.drudis.2014.01.012]
5. Carbone EJ, Jiang T, Nelson C, Henry N, Lo KWH. Small molecule delivery through nanofibrous scaffolds for musculoskeletal regenerative engineering. Nanomedicine: nanotechnology, biology and medicine 2014; 10(8): 1691-1699. [DOI:10.1016/j.nano.2014.05.013]
6. Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends in biotechnology 2014; 32(2): 74-81. [DOI:10.1016/j.tibtech.2013.12.002]
7. Tai IC, Fu YC, Wang CK, Chang JK, Ho ML. Local delivery of controlled-release simvastatinvastatin/PLGA /HAp microspheres enhances bone repair. International journal of nanomedicine 2013; 8: 3895. [DOI:10.2147/IJN.S48694]
8. Ho MH, Chiang CP, Liu YF, Kuo MYP, Lin SK, Lai JY, Lee BS. Highly efficient release of lovastatin from poly (lactic‐co‐glycolic acid) nanoparticles enhances bone repair in rats. Journal of orthopaedic research 2011; 29 (10): 1504-1510. [DOI:10.1002/jor.21421]
9. Monjo M, Rubert M, Wohlfahrt JC, Rønold HJ, Ellingsen JE, Lyngstadaas SP. In vivo performance of absorbable collagen sponges with rosuvastatin in critical-size cortical bone defects. Acta biomaterialia 2010; 6(4): 1405-1412. [DOI:10.1016/j.actbio.2009.09.027]
10. Moriyama Y, Ayukawa Y, Ogino Y, Atsuta I, Todo M, Takao Y, Koyano K. Local application of fluvastatin improves peri-implant bone quantity and mechanical properties: a rodent study. Acta biomaterialia 2010; 6(4): 1610-1618. [DOI:10.1016/j.actbio.2009.10.045]
11. Li D. Sun H, Jiang L, Zhang K, Liu W, Zhu Y, Fangteng J, Shi C, Zhao L, Sun H. Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS applied materials and interfaces 2014; 6(12): 9402-9410. [DOI:10.1021/am5017792]
12. Nguyen LT, Liao S, Chan CK, Ramakrishna S. Electrospun poly (L-lactic acid) nanofibres loaded with dexamethasone to induce osteogenic differentiation of human mesenchymal stem cells. Journal of biomaterials science, polymer edition 2012; 23(14): 1771-1791. [DOI:10.1163/092050611X597807]
13. Ivanova E, Bazaka K, Crawford R. Natural polymer biomaterials: Advanced applications. New functional biomaterials for medicine and healthcare 2014; 1: 32-70. [DOI:10.1533/9781782422662.32]
14. Zafar B, Mottaghitalab F, Shahosseini Z, Negahdari B, Farokhi M. Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. Materialia 2020; 9: 100518. [DOI:10.1016/j.mtla.2019.100518]
15. Rezaei F, Damoogh S, Reis RL, Kundu SC, Mottaghitalab F, Farokhi M. Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 2020; 13(1): 015005. [DOI:10.1088/1758-5090/abbb82]
16. Avani F, Damoogh S, Mottaghitalab F, Karkhaneh A, Farokhi M. Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. International journal of polymeric materials and polymeric biomaterials 2019; 69(1):32-43. [DOI:10.1080/00914037.2019.1616201]
17. Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of controlled release 2012; 157(2): 168-182. [DOI:10.1016/j.jconrel.2011.07.031]
18. Wenk, E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. Journal of controlled release 2011; 150(2): 128-141. [DOI:10.1016/j.jconrel.2010.11.007]
19. Chuang SC, Liao HJ, Li CJ, Wang GJ, Chang JK, Ho ML. Simvastatinvastatin enhances human osteoblast proliferation involved in mitochondrial energy generation. European journal of pharmacology 2013; 714(1-3): 74-82. [DOI:10.1016/j.ejphar.2013.05.044]
20. Sabandal MMI, Schäfer E, Aed J, Jung S, Kleinheinz J, Sielker S. Simvastatinvastatin induces adverse effects on proliferation and mineralization of human primary osteoblasts. Head and face medicine 2020; 16(1):1-9. [DOI:10.1186/s13005-020-00232-4]
21. Hajihasani Biouki M, Mobedi H, Karkhaneh A, Daliri Joupari M. Development of a simvastatinvastatin loaded injectable porous scaffold in situ formed by phase inversion method for bone tissue regeneration. The international journal of artificial organs 2019; 42(2): 72-79. [DOI:10.1177/0391398818806161]
22. Sukul M, Min YK, Lee SY, Lee BT. Osteogenic potential of simvastatinvastatin loaded gelatin-nanofibrillar cellulose-β tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. European polymer journal 2015; 73: 308-323. [DOI:10.1016/j.eurpolymj.2015.10.022]
23. Pullisaar H, Reseland J E, Haugen H J, Brinchmann J E, Østrup E. Simvastatinvastatin coating of TiO2 scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochemical and biophysical research communications 2014; 447(1): 139-144. [DOI:10.1016/j.bbrc.2014.03.133]
24. Huang X, Huang Z, Li W. Highly efficient release of simvastatinvastatin from simvastatinvastatin‑loaded calcium sulphate scaffolds enhances segmental bone regeneration in rabbits. Molecular medicine reports 2014; 9(6): 2152-2158. [DOI:10.3892/mmr.2014.2101]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.