Volume 26, Issue 2 (3-2022)                   IBJ 2022, 26(2): 142-152 | Back to browse issues page

PMID: 35032967


XML Print


Abstract:  
Background: Stenotrophomonas maltophilia is an opportunistic bacterium, contributing to different hospital-acquired infections and can be acquired from different hospital setting sources. Epidemiological study of S. maltophilia in the hospital also demonstrates the intrahospital distribution of certain strains of bacteria in healthcare facilities. The aim of the current study was to identify the molecular epidemiology of S. maltophilia isolates from clinical and environmental sources within a hospital.  
Methods: A total of 400 samples (clinical and environmental) were collected from the different settings of hospital. Following the standard biochemical testing and 23S rRNA genotyping, the molecular typing of S. maltophilia isolates was determined using the multilocus sequence typing (MLST) technique. Also, the frequencies of zot and entF virulence genes among S. maltophilia isolates were examined by PCR technique.  
Results: Based on the biochemical testes and PCRs targeting 23S rRNA gene, 22 S. maltophilia isolates were identified. The MLST analysis demonstrated that these isolates were assigned to 14 ST, and 6 out of 14 STs were common among clinical and environmental samples. All 22 isolates were identified in the PubMLST database. The PCR screening demonstrated that none of 22 S. maltophilia isolates had zot virulence gene, while the entF gene with the 59% frequency was observed in 13 out of 22 isolates. Among these 13 isolates, 6 STs were common in clinical and environmental isolates.
Conclusion: Our study showed the clonal relatedness between clinical and environmental sources of the S. maltophilia isolates in a hospital. Further studies are required to understand the epidemic situation of this pathogen in the clinic and the environment.

References
1. Igbinosa EO, FE Oviasogie. Multiple antibiotics resistant among environmental isolates of Stenotrophomonas maltophilia. Journal of applied sciences and environmental management 2014; 18(2): 255-261. [DOI:10.4314/jasem.v18i2.16]
2. Hayward AC, Fegan N, Fegan M, Stirling G. Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. Journal of applied microbiology 2010; 108(3): 756-770. [DOI:10.1111/j.1365-2672.2009.04471.x]
3. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, Van Der Lelie D, Dow JM. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature reviews microbiology 2009; 7(7): 514-525. [DOI:10.1038/nrmicro2163]
4. Bostanghadiri N, Ghalavand N, Fallah F, Yadegar A, Ardebili A, Tarashi S, Pournajaf A, Mardaneh J, Shams S, Hashemi A. Characterization of phenotypic and genotypic diversity of Stenotrophomonas maltophilia strains isolated from selected hospitals in Iran. Frontiers in microbiology 2019; 10: 1191. [DOI:10.3389/fmicb.2019.01191]
5. Pompilio A, Pomponio S, Crocetta V, Gherardi G, Verginelli F, Fiscarelli F, Dicuonzo G, Savini V, D'Antonio D, Di Bonaventura G. Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC microbiology 2011; 11(1): 1-17. [DOI:10.1186/1471-2180-11-159]
6. Di Bonaventura G, Pompilio A, Zappacosta R, Petrucci F, Fiscarelli E, Rossi C, Piccolomini R. Role of excessive inflammatory response to Stenotrophomonas maltophilia lung infection in DBA/2 mice and implications for cystic fibrosis. Infection and immunity 2010; 78(6): 2466-2476. [DOI:10.1128/IAI.01391-09]
7. Falagas ME, Kastoris AC, Vouloumanou EK, Rafailidis PI, Kapaskelis AM, Dimopoulos G. Attributable mortality of Stenotrophomonas maltophilia infections: a systematic review of the literature. Future microbiology 2009; 4(9): 1103-1109. [DOI:10.2217/fmb.09.84]
8. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clinical microbiology reviews 2012; 25(1): 2-41. [DOI:10.1128/CMR.00019-11]
9. Sumida K, Chong Y, Miyake N, Akahoshi T, Yasuda M, Shimono N, Shimoda S, Maehara Y, Akashi K. Risk factors associated with Stenotrophomonas maltophilia bacteremia: a matched case-control study. PLoS one 2015; 10(7): e0133731. [DOI:10.1371/journal.pone.0133731]
10. Hu LF, Chen GS, Kong QX, Gao LP, Chen X, Ye Y, Li JB. Increase in the prevalence of resistance determinants to trimethoprim/sulfamethoxazole in clinical Stenotrophomonas maltophilia isolates in China. Plos one 2016; 11(6): e0157693. [DOI:10.1371/journal.pone.0157693]
11. Borsi SH, Shoushtari MH, Raji H, Ghalavand F. Prevalence of Gram-negative bacteria isolated from patients with ventilator-associated pneumonia in intensive care units of Imam Khomeini Hospital, Ahwaz, Iran. Novelty in biomedicine 2018; 6(4): 167-173.
12. Thomas R, Hamat RA, Neela V. Extracellular enzyme profiling of Stenotrophomonas maltophilia clinical isolates. Virulence 2014; 5(2): 326-330. [DOI:10.4161/viru.27724]
13. Araoka H, Baba M, Yoneyama A. Risk factors for mortality among patients with Stenotrophomonas maltophilia bacteremia in Tokyo, Japan, 1996-2009. European journal of clinical microbiology and infectious diseases 2010; 29(5): 605-608. [DOI:10.1007/s10096-010-0882-6]
14. Ebrahim-Saraie HS, Heidari H, Soltani B, Mardaneh J, Motamedifar M. Prevalence of antibiotic resistance and integrons, sul and Smqnr genes in clinical isolates of Stenotrophomonas maltophilia from a tertiary care hospital in Southwest Iran. Iranian journal of basic medical sciences 2019; 22(8): 872.
15. Madi H, Lukić J, Vasiljević Z, Biočanin M, Kojić M, Jovčić B, Lozo J. Genotypic and phenotypic characterization of Stenotrophomonas maltophilia strains from a pediatric tertiary care hospital in Serbia. PloS one 2016; 11(10): e0165660. [DOI:10.1371/journal.pone.0165660]
16. Rutter WC, Burgess DR, Burgess DS. Increasing incidence of multidrug resistance among cystic fibrosis respiratory bacterial isolates. Microbial drug resistance 2017; 23(1): 51-55. [DOI:10.1089/mdr.2016.0048]
17. Sánchez MB. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Frontiers in microbiology 2015; 6: 658. [DOI:10.3389/fmicb.2015.00658]
18. Brooke JS. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert review of anti-infective therapy 2014; 12(1): 1-4. [DOI:10.1586/14787210.2014.864553]
19. Ferjani S, Saidani M, Hamzaoui Z, Alonso CA, Torres C, Maamar E, Slim AF, Boutiba BBI. Community fecal carriage of broad-spectrum cephalosporin-resistant Escherichia coli in Tunisian children. Diagnostic microbiology and infectious disease 2017; 87(2): 188-192. [DOI:10.1016/j.diagmicrobio.2016.03.008]
20. Cho HH, Sung JY, Kwon KC, Koo SH. Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia. Annals of laboratory medicine 2012; 32(1): 38-43. [DOI:10.3343/alm.2012.32.1.38]
21. Denton M, Todd NJ, Kerr KG, Hawkey PM, Littlewood JM. Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. Journal of clinical microbiology 1998; 36(7): 1953-1958. [DOI:10.1128/JCM.36.7.1953-1958.1998]
22. Dalbøge C, Hansen C, Pressler T, Høiby N, Johansen H. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. Journal of cystic fibrosis 2011; 10(5): 318-325. [DOI:10.1016/j.jcf.2011.03.006]
23. Waite T, Georgiou A, Abrishami M, Beck C. Pseudo-outbreaks of Stenotrophomonas maltophilia on an intensive care unit in England. Journal of hospital infection 2016; 92(4): 392-396. [DOI:10.1016/j.jhin.2015.12.014]
24. Kaiser S, Biehler K, Jonas D. A Stenotrophomonas maltophilia multilocus sequence typing scheme for inferring population structure. Journal of bacteriology 2009; 191(9): 2934-2943. [DOI:10.1128/JB.00892-08]
25. Dan T, Liu W, Sun Z, Lv Q, Xu H, Song Y, Zhang H. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia. BMC microbiology 2014; 14(1): 150. [DOI:10.1186/1471-2180-14-150]
26. Arvanitidou M, Vayona A, Spanakis N, Tsakris A. Occurrence and antimicrobial resistance of Gram-negative bacteria isolated in haemodialysis water and dialysate of renal units: results of a Greek multicentre study. Journal of applied microbiology 2003; 95(1): 180-185. [DOI:10.1046/j.1365-2672.2003.01966.x]
27. Kovaleva J, Degener J, Van der Mei H. Mimicking disinfection and drying of biofilms in contaminated endoscopes. Journal of hospital infection 2010; 76(4): 345-350. [DOI:10.1016/j.jhin.2010.07.008]
28. Furuhata K, Ishizaki N, Kawakami Y, Fukuyama M. Bacterial contamination of stock solutions in storage cases for contact lens, and the disinfectant-resistance of isolates. Biocontrol science 2010; 15(3): 81-85. [DOI:10.4265/bio.15.81]
29. Wishart MM, Riley TV. Infection with Pseudomonas maltophilia hospital outbreak due to contaminated disinfectant. Medical journal of australia 1976; 2(19): 710-712. [DOI:10.5694/j.1326-5377.1976.tb128238.x]
30. Klausner JD, Zukerman C, Limaye AP, Corey L. Outbreak of Stenotrophomonas maltophilia bacteremia among patients undergoing bone marrow transplantation: association with faulty replacement of handwashing soap. Infection control and hospital epidemiology 1999; 20(11): 756-758. [DOI:10.1086/501578]
31. De la Rosa García S, Muñoz García A, Barahona Pérez L, Gamboa Angulo M. Antimicrobial properties of moderately halotolerant bacteria from cenotes of the Yucatan peninsula. Letters in applied microbiology 2007; 45(3): 289-294. [DOI:10.1111/j.1472-765X.2007.02185.x]
32. Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proceedings of the national academy of sciences 2009; 106(38): 16393-16399. [DOI:10.1073/pnas.0908446106]
33. Liang J, Ducatelle R, Pasmans F, Smet A, Haesebrouck F, Flahou B. Multilocus sequence typing of the porcine and human gastric pathogen Helicobacter suis. Journal of clinical microbiology 2013; 51(3): 920-926. [DOI:10.1128/JCM.02399-12]
34. Kardan Yamchi J, Hajihasani A, Talebi M, Khodaparast S, Azimi A, Rahbar M, Fallah F, Douraghi M. Intra‐hospital dissemination of clinical and environmental isolates of Stenotrophomonas maltophilia from Tehran. Letters in applied microbiology 2020; 72(3): 325-331. [DOI:10.1111/lam.13416]
35. De Oliveira Garcia D, Dall'Agnol D, Rosales M, Azzuz AC, Alcántara N, Martinez NB, Girón JA. Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cellular microbiology 2003; 5(9): 625-636. [DOI:10.1046/j.1462-5822.2003.00306.x]
36. Hagemann M, Hasse D, Berg G. Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Archives of microbiology 2006; 185(6): 449-458. [DOI:10.1007/s00203-006-0115-7]
37. Windhorst S, Frank E, Georgieva DN, Genov N, Buck F, Borowski P, Weber W. The major extracellular protease of the nosocomial pathogen Stenotrophomonas maltophilia characterization of the protein and molecular cloning of the gene. Journal of biological chemistry 2002; 277(13): 11042-11049. [DOI:10.1074/jbc.M109525200]
38. Nas MY, Cianciotto NP. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin. Microbiology 2017; 163(11): 1590. [DOI:10.1099/mic.0.000545]
39. Pompilio A, Crocetta V, Ghosh D, Chakrabarti M, Gherardi G, Vitali LA, Fiscarelli E, Di Bonaventura G. Stenotrophomonas maltophilia phenotypic and genotypic diversity during a 10-year colonization in the lungs of a cystic fibrosis patient. Frontiers in microbiology 2016; 7: 1551. [DOI:10.3389/fmicb.2016.01551]
40. Raymond KN, Dertz EA, Kim SS. Enterobactin: an archetype for microbial iron transport. Proceedings of the national academy of sciences 2003; 100(7): 3584-3588. [DOI:10.1073/pnas.0630018100]
41. Fiedler HP, Krastel P, Müller J, Gebhardt K, Zeeck A. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS microbiology letters 2001; 196(2): 147-151. [DOI:10.1111/j.1574-6968.2001.tb10556.x]
42. Crouch MLV, Castor M, Karlinsey JE, Kalhorn T, Fang FC. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Molecular microbiology 2008; 67(5): 971-983. [DOI:10.1111/j.1365-2958.2007.06089.x]
43. Wyckoff EE, Allred BE, Raymond KN, Payne SM. Catechol siderophore transport by Vibrio cholerae. Journal of bacteriology 2015; 197(17): 2840-2849. [DOI:10.1128/JB.00417-15]
44. Lawlor MS, O'Connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infection and immunity 2007; 75(3): 1463-1472. [DOI:10.1128/IAI.00372-06]
45. Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH, Crumrine DS, Castignetti D, Cianciotto NP. Purification of legiobactin and importance of this siderophore in lung infection by Legionella pneumophila. Infection and immunity 2009; 77(7): 2887-2895. [DOI:10.1128/IAI.00087-09]
46. Ghysels B, Ochsner U, Möllman U, Heinisch L, Vasil M, Cornelis P, Matthijs S. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS microbiology letters 2005; 246(2): 167-174. [DOI:10.1016/j.femsle.2005.04.010]
47. Singh V, San Yeoh B, Xiao X, Kumar M, Bachman M, Borregaard N, Joe B, Vijay-Kumar M. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nature communications 2015; 6(1): 1-11. [DOI:10.1038/ncomms8113]
48. Coburn B, Wang PW, Caballero JD, Clark SD, Brahma V, Donaldson S, Zhang Y, Surendra A, Gong Y, Tullis DE. Lung microbiota across age and disease stage in cystic fibrosis. Scientific reports 2015; 5: 10241. [DOI:10.1038/srep10241]
49. Pompilio A, Crocetta V, De Nicola S, Verginelli F, Fiscarelli E, Di Bonaventura G. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Frontiers in microbiology 2015; 6: 951. [DOI:10.3389/fmicb.2015.00951]
50. Holden VI, Lenio S, Kuick R, Ramakrishnan SK, Shah YM, Bachman MA. Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infection and immunity 2014; 82(9): 3826-3836. [DOI:10.1128/IAI.01849-14]
51. Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, Kaper J. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proceedings of the national academy of sciences 1991; 88(12): 5242-5246. [DOI:10.1073/pnas.88.12.5242]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.