Volume 25, Issue 4 (7-2021)                   IBJ 2021, 25(4): 265-274 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohamed Kamal A, Ahmed Sebak S, Fouad Sanad E. Mixed Lineage Kinase Domain-Like Pseudokinase (MLKL) Gene Expression in Human Atherosclerosis with and without Type 2 Diabetes Mellitus. IBJ 2021; 25 (4) :265-274
URL: http://ibj.pasteur.ac.ir/article-1-3271-en.html
Background: Mixed lineage kinase domain-like pseudokinase (MLKL), one of the main downstream components of the necroptosis or programmed necrosis has recently been demonstrated in advanced atherosclerotic lesions. However, its precise role in the atherosclerosis pathogenesis still requires more elucidation. Our study was set to delineate both the changes in peripheral MLKL gene expression and its influence on disease severity in atherosclerotic patients with and without type 2 diabetes mellitus. Methods: The study involved 50 patients (20 non-diabetics and 30 diabetics) undergoing coronary artery bypass graft and 20 apparently healthy controls. Taqman RT-PCR was used to quantify MLKL mRNA expression levels, while ELISA was employed to estimate serum insulin and high sensitivity C-reactive protein (hsCRP) levels. Results: Compared with the control group, MLKL gene was up regulated significantly in cardiovascular diseases (CVD; p ≤ 0.001). Higher MLKL expression was demonstrated in diabetic CVD group than non-diabetic group (p < 0.05). Correlation studies reported positive associations between MLKL and markers of dyslipidemia, inflammation, and insulin resistance. Multiple regression analysis revealed that FBG levels, hsCRP levels, and total white blood cells count were significant predictors for MLKL levels. Receiver operating characteristic curve showed a significant diagnostic value of MLKL for CVD. Moreover, regression analysis demonstrated that MLKL and hsCRP were independent predicting factors for the severity of CVD. Conclusion: MLKL is linked to hallmarks of atherosclerosis and could explain increased cardiovascular risk in diabetic patients. Thus, it can be a potential drug target for treatment of atherosclerotic patients.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. Journals of the american college of cardiology 2009; 54(23): 2129-2138. [DOI:10.1016/j.jacc.2009.09.009]
2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice 2010; 87(1): 4-14. [DOI:10.1016/j.diabres.2009.10.007]
3. Preis SR, Hwang SJ, Coady S, Pencina MJ, D'Agostino RB, Savage PJ, Levy D, Fox CS. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the framingham Heart Study 1950 to 2005. Circulation 2009; 119(13): 1728-1735. [DOI:10.1161/CIRCULATIONAHA.108.829176]
4. Huang WC, Sala-Newby GB, Susana A, Johnson JL, Newby AC. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB. PLoS one 2012; 7(8): e42507. [DOI:10.1371/journal.pone.0042507]
5. Schaub N, Reichlin T, Meune C, Twerenbold R, Haaf P, Hochholzer W, Niederhauser N, Bosshard P, Stelzig C, Freese M, Reiter M, Gea J, Buser A, Mebazaa A, Osswald S, Mueller C. Markers of plaque instability in the early diagnosis and risk stratification of acute myocardial infarction. Clinical chemistry 2012; 58(1): 246-256. [DOI:10.1373/clinchem.2011.172940]
6. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015; 517(7534): 311-320. [DOI:10.1038/nature14191]
7. Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. Journal of lipid research 2009; 50: S364-369. [DOI:10.1194/jlr.R800092-JLR200]
8. Lockshin RA, Williams CM. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. Journal of insect physiology 1965; 11: 123-133. [DOI:10.1016/0022-1910(65)90099-5]
9. Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell death and differentiation 2019; 26(1): 99-114. [DOI:10.1038/s41418-018-0212-6]
10. Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: A crucial pathogenic mediator of human disease. Journal of clinical investigation insight 2019; 4(15): e128834. [DOI:10.1172/jci.insight.128834]
11. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature immunology 2000; 1(6): 489-495. [DOI:10.1038/82732]
12. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature chemical biology 2005; 1(2): 112-119. [DOI:10.1038/nchembio711]
13. Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nature reviews molecular cell biology 2017; 18(2): 127-136. [DOI:10.1038/nrm.2016.149]
14. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012; 148(1-2): 213-27. [DOI:10.1016/j.cell.2011.11.031]
15. Wallach D, Kang T-B, Dillon CP, Green DR. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 2016; 352(6281): aaf2154. [DOI:10.1126/science.aaf2154]
16. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJM, Vandenabeele P. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell reports 2014; 7(4): 971-981. [DOI:10.1016/j.celrep.2014.04.026]
17. Kaczmarek A, Vandenabeele P, Krysko D V. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38(2): 209-223 [DOI:10.1016/j.immuni.2013.02.003]
18. Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell research 2014; 24(1): 105-121. [DOI:10.1038/cr.2013.171]
19. Newton K, Dugger DL, Wickliffe KE, Kapoor N, De Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM, Webster J, Roose-Girma M, Warming S, Dixit VM. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 2014; 343(6177): 1357-1360. [DOI:10.1126/science.1249361]
20. Xu H, Du X, Liu G, Huang S, Du W, Zou S, Tang D, Fan C, Xie Y, Wei Y, Tian Y, Fu X. The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Molecular metabolism 2019; 23: 14-23. [DOI:10.1016/j.molmet.2019.02.003]
21. Newton K, Dugger DL,Maltzman A, Greve JM, Hedehus M, Martin-Mcnulty B, Carano RAD, Cao TC, VanBruggen N, Bernstein L, Lee WP, Wu X, Devoss J, Zhang J, Jeet S, Peng I,McKenzie BS, Roose-Girma M, Caplazi P, Diehl L, Webster JD, Vucic D. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKLdeficiency in mouse models of inflammation and tissue injury. Cell dath and differentiation 2016; 23(9): 1565-76. [DOI:10.1038/cdd.2016.46]
22. Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, Hedin U, Sad S, Guo L, Kolodgie FD, Virmani R, Ruddy T, Rayner KJ. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Science advances 2016; 2(7): e1600224. [DOI:10.1126/sciadv.1600224]
23. Rasheed A, Robichaud S, Nguyen M-A, Geoffrion M, Wyatt H, Cottee ML, Dennison T, Pietrangelo A, Lee R, Lagace TA. Loss of MLKL (mixed lineage kinase domain-like protein) decreases necrotic core but increases macrophage lipid accumulation in atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 2020; 40(5): 1155-1167. [DOI:10.1161/ATVBAHA.119.313640]
24. Günther C, He GW, Kremer AE, Murphy JM, Petrie EJ, Amann K, Vandenabeele P, Linkermann A, Poremba C, Schleicher U, Dewitz C, Krautwald S, Neurath MF, Becker C, Wirtz S. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. Journal of clinical investigation 2016; 126(11): 4346-4360. [DOI:10.1172/JCI87545]
25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412-419. [DOI:10.1007/BF00280883]
26. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. Journal of clinical endocrinology and metabolism 2000; 85(7): 2402-2410. [DOI:10.1210/jcem.85.7.6661]
27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001; 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
28. World Medical Association (WMA) Declaration of Helsinki-Ethical Principles for Medical Research involving human subjects. 64th WMA General Assembly, Fortaleza, Brazil, October 2013. Reterieved from: https://tinyurl.com/y7f5boyg.
29. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard B V., Mitch W, Smith SC, Sowers JR. Diabetes and cardiovascular disease: A statement for healthcare professionals from the american heart association. Circulation 1999; 100(10): 1134-1146. [DOI:10.1161/01.CIR.100.10.1134]
30. Sanad EF, Hamdy NM, El-Etriby AK, Sebak SA, El-Mesallamy HO. Peripheral leucocytes and tissue gene expression of granzyme B/perforin system and serpinB9: Impact on inflammation and insulin resistance in coronary atherosclerosis. Diabetes research and clinical practice 2017; 131:132-141. [DOI:10.1016/j.diabres.2017.07.013]
31. Gupta K, Phan N, Wang Q, Liu B. Necroptosis in cardiovascular disease - a new therapeutic target. Journal of molecular and cellular cardiology 2018; 118: 26-35. [DOI:10.1016/j.yjmcc.2018.03.003]
32. Wang Q, Liu Z, Ren J, Morgan S, Assa C, Liu B. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circulation research 2015; 116(4): 600-611. [DOI:10.1161/CIRCRESAHA.116.304899]
33. Lin J, Li H, Yang M, Ren J, Huang Z, Han F, Huang J, Ma J, Zhang D, Zhang Z, Wu J, Huang D, Qiao M, Jin G, Wu Q, Huang Y, Du J, Han J. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell reports 2013; 3(1): 200-210. [DOI:10.1016/j.celrep.2012.12.012]
34. Tsuruta R, Fujita M, Ono T, Koda Y, Koga Y, Yamamoto T, Nanba M, Shitara M, Kasaoka S, Maruyama I, Yuasa M, Maekawa T. Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain research 2010; 1309: 155-163. [DOI:10.1016/j.brainres.2009.10.065]
35. LaRocca TJ, Sosunov SA, Shakerley NL, Ten VS, Ratner AJ. Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. Journal of biological chemistry 2016; 291(26): 13753-13761. [DOI:10.1074/jbc.M116.716027]
36. Meerwaldt R, Links T, Zeebregts C, Tio R, Hillebrands J-L, Smit A. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes. Cardiovascular diabetology 2008; 7(1): 29. [DOI:10.1186/1475-2840-7-29]
37. Karrowni W, Li Y, Jones PG, Cresci S, Abdallah MS, Lanfear DE, Maddox TM, McGuire DK, Spertus JA, Horwitz PA. Insulin resistance is associated with significant clinical atherosclerosis in nondiabetic patients with acute myocardial infarction. Arteriosclerosis, thrombosis, and vascular biology 2013; 33(9): 2245-2251. [DOI:10.1161/ATVBAHA.113.301585]
38. Festa A, D'Agostino Jr R, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102(1): 42-47. [DOI:10.1161/01.CIR.102.1.42]
39. Kant S, Barrett T, Vertii A, Noh YH, Jung DY, Kim JK, Davis RJ. Role of the mixed-lineage protein kinase pathway in the metabolic stress response to obesity. Cell reports 2013; 4(4): 681-688. [DOI:10.1016/j.celrep.2013.07.019]
40. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernández-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, Van Loo G, Pasparakis M. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 2011; 477(7364): 330-334. [DOI:10.1038/nature10273]
41. Stȩpień M, Stȩpień A, Wlazeł RN, Paradowski M, Banach M, Rysz J. Obesity indices and inflammatory markers in obese non-diabetic normo- and hypertensive patients: A comparative pilot study. Lipids in health disease 2014; 13: 29. [DOI:10.1186/1476-511X-13-29]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb