Volume 25, Issue 1 (1-2021)                   IBJ 2021, 25(1): 8-20 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajipour F, Asad S, Amoozegar M A, Javidparvar A A, Tang J, Zhong H et al . Developing a Fluorescent Hybrid Nanobiosensor Based on Quantum Dots and Azoreductase Enzyme forMethyl Red Monitoring. IBJ 2021; 25 (1) :8-20
URL: http://ibj.pasteur.ac.ir/article-1-3250-en.html
Background: Azo dyes are the most widely used synthetic colorants in the textile, food, pharmaceutical, cosmetic, and other industries, accounting for nearly 70% of all dyestuffs consumed. Recently, much research attention has been paid to efficient monitoring of these hazardous chemicals and their related metabolites because of their potentially harmful effect on environmental issues. In contrast to the complex and expensive instrumental procedures, the detection system based on the quantum dots (QDs) with the superior optochemical properties provides a new era in the pollution sensing and prevention. Methods: We have developed a QD-enzyme hybrid system to probe methyl red (MR) in aqueous solutions using a fluorescence quenching procedure. Results: The azoreductase enzyme catalyzed the reduction of azo group in MR, which can efficiently decrease the Förster resonance energy transfer between the QDs and MR molecules. The correlation between the QDs photoluminescence recovery and MR enzymatic decolorization at the neutral phosphate buffer permitted the creation of a fluorescence quenching-based sensor. The synthesized biosensor can be used for the accurate detection of MR in a linear calibration over MR concentrations of 5-84 μM, with the limit of detection of 0.5 μM in response time of three minutes. Conclusion: Our findings revealed that this fluorometric sensor has the potential to be successfully applied for monitoring a wide linear range of MR concentration with the relative standard deviation of 4% rather than the other method.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Saxe JP, Lubenow BL, Chiu PC, Huang CP, Cha DK. Enhanced biodegradation of azo dyes using an integrated elemental iron‐activated sludge system: I. Evaluation of system performance. Water environment research 2006; 78: 19-25. [DOI:10.2175/106143005X84477]
2. Hao J, Song F, Huang F, Yang C, Zhang Z, Zheng Yi, Tian X. Production of laccase by a newly isolated deuteromycete fungus pestalotiopsis sp. and its decolorization of azo dye. Journal of industrial microbiology and biotechnology 2007; 34(3): 233-240. [DOI:10.1007/s10295-006-0191-3]
3. Brosillon S, Djelal H, Merienne N, Amrane A. Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination 2008; 222(1-3): 331-339. [DOI:10.1016/j.desal.2007.01.153]
4. Ledakowicz S, Solecka M, Zylla R. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of biotechnology 2001; 89(2-3): 175-184. [DOI:10.1016/S0168-1656(01)00296-6]
5. Robinson T, McMullan G, Marchant R, Niam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology 2001; 77(3): 247-255. [DOI:10.1016/S0960-8524(00)00080-8]
6. D'Souza DT, Tiwari R, Sah AK, Raghukumar C. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme and microbial technology 2006; 38(3-4): 504-511. [DOI:10.1016/j.enzmictec.2005.07.005]
7. Puvaneswari N, Muthukrishnan J, Gunasekaran P. Toxicity assessment and microbial degradation of azo dyes. Indian journal of experimental biology 2006; 44(8): 618-626.
8. Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied catalysis B 2004; 49(1): 1-14. [DOI:10.1016/j.apcatb.2003.11.010]
9. Novotný C, Dias N, Kapanen A, Malachová K, Vándrovcová M, Tävaara M, Lima N. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo-and anthraquinone dyes. Chemosphere 2006; 63: 1436-1442 [DOI:10.1016/j.chemosphere.2005.10.002]
10. Fuh MR, Chia KJ. Determination of sulphonated azo dyes in food by ion-pair liquid chromatography with photodiode array and electrospray mass spectrometry detection. Talanta 2002; 56(4): 663-671. [DOI:10.1016/S0039-9140(01)00625-7]
11. Yu Y, Jimmy CY, Chan CY, Che YK, Zhao JC, Ding L, Ge WK, Wong PK. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Applied catalysis B: Environmental 2005; 61(1): 1-11. [DOI:10.1016/j.apcatb.2005.03.008]
12. Lau YY, Wong YS, Teng TT, Morad N, Rafatullah M, Ong SA. Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chemical engineering journal 2014; 246: 383-390. [DOI:10.1016/j.cej.2014.02.100]
13. Kusvuran E, Gulnaz O, Irmak S, Atanur OM, Yavuz HL, Erbatur O. Comparison of several advanced oxidation processes for the decolorization of reactive red 120 azo dye in aqueous solution. Journal of hazardous materials 2004; 109(1-3): 85-93. [DOI:10.1016/j.jhazmat.2004.03.009]
14. Grzechulska J, Morawski AW. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Applied catalysis B: Environmental 2002; 36(1): 45-51. [DOI:10.1016/S0926-3373(01)00275-2]
15. Pielesz A, Świerczek S, Włochowicz A, Baranowska I. Adsorption and partition TLC separation of MAK-type aromatic amines, reduction products of azo dyes. Journal of planar chromatography-modern TLC 1999; 12(3): 215-220.
16. Stylidi M, Kondarides DI, Verykios XE. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Applied catalysis B: Environmental 2003; 40(4): 271-286. [DOI:10.1016/S0926-3373(02)00163-7]
17. Pielesz A, Baranowska I, Rybak A, Włochowicz A. Detection and determination of aromatic amines as products of reductive splitting from selected azo dyes. Ecotoxicology and environmental safety 2002; 53(1): 42-47. [DOI:10.1006/eesa.2002.2191]
18. Pielesz A, Baranowska I, Świerczek S, Less AW. Separation of aromatic amines of MAK group, which are the reduction products of azo dyes by partition HPLC chromatography. Chemia analityczna 1999; 44: 495-504.
19. Yang HY, He CS, Li L, Zhang J, Shen JY, Mu Y, Yu HQ, Yang HY. Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors. Scientific reports 2016; 6: Article number 27243. [DOI:10.1038/srep27243]
20. Punzi M, Anbalagan A, Börner RA, Svensson BM, Jonstrup M, Mattiasson B. Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chemical engineering journal 2015; 270: 290-299. [DOI:10.1016/j.cej.2015.02.042]
21. Shah MP. Azo dye reduction by methanogenic granular sludge exposed to oxygen. International journal of environmental bioremediation and biodegradation 2014; 2(1): 18-24.
22. Almeida E, Corso C. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 2014; 112: 317-322. [DOI:10.1016/j.chemosphere.2014.04.060]
23. Luo X, Morrin A, Killard AJ, Smyth M. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006; 18(4): 319-326. [DOI:10.1002/elan.200503415]
24. Jianrong C, Yuqing M, Nongyue H , Xiaohua W, Sijiao L. Nanotechnology and biosensors. Biotechnology advances 2004; 22(7): 505-518. [DOI:10.1016/j.biotechadv.2004.03.004]
25. Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: concepts and variations. ISRN Nanomaterials 2013; Article ID: 327435. [DOI:10.1155/2013/327435]
26. Iñarritu I, Torres E, Topete A, Campos-Terán J. Immobilization effects on the photocatalytic activity of CdS quantum Dots-Horseradish peroxidase hybrid nanomaterials. Journal of colloid and interface science 2017; 506: 36-45. [DOI:10.1016/j.jcis.2017.07.015]
27. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annual review of biomedical engineering 2007; 9: 257-288. [DOI:10.1146/annurev.bioeng.9.060906.152025]
28. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced drug delivery reviews 2008; 60(11): 1226-1240. [DOI:10.1016/j.addr.2008.03.015]
29. Algar WR, Krull UJ. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Analytical and bioanalytical chemistry 2008; 391(5): 1609-1618. [DOI:10.1007/s00216-007-1703-3]
30. Martín-Palma RJ, Manso M, Torres-Costa V. Optical biosensors based on semiconductor nanostructures. Sensors (Basel) 2009; 9(7): 5149-5172. [DOI:10.3390/s90705149]
31. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature materials 2005; 4: 435-446. [DOI:10.1038/nmat1390]
32. Ibnaouf K, Prasad S, Hamdan A, Alsalhi M, Alswayyan AS, Zaman MB, Masilamani V. Photoluminescence spectra of CdSe/ZnS quantum dots in solution. Spectrochimica acta part A: Molecular and biomolecular spectroscopy 2014; 121: 339-345. [DOI:10.1016/j.saa.2013.10.089]
33. Hu D, Chen L, Liu K, Xiong J. Characteristics of Photobleaching of Quantum Dots CdSe in FBS Solutions. In: Kim H, editor. Advances in technology and management. Advances in Intelligen and Soft Computing. Berlin: Springer; 2012. [DOI:10.1007/978-3-642-29637-6_95]
34. Vasudevan D, Gaddam RR, Trinchi A, Cole I. Core-shell quantum dots: Properties and applications. Journal of Alloys and Compounds. 2015; 636: 395-404. [DOI:10.1016/j.jallcom.2015.02.102]
35. Suzuki Y, Yoda T, Ruhul A, Suqiura W. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. Journal of biological chemistry 2001; 276(12): 9059-9065. [DOI:10.1074/jbc.M008083200]
36. Blümel S, Knackmuss HJ, Stolz A. Molecular cloning and characterization of the gene coding for the aerobic azoreductase from xenophilus azovorans KF46F. Applied environmental microbiology 2002; 68(8): 3948-3955. [DOI:10.1128/AEM.68.8.3948-3955.2002]
37. Blümel S, Stolz A. Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Applied microbiology and biotechnology 2003; 62: 186-190. [DOI:10.1007/s00253-003-1316-5]
38. Morrison JM, Wright CM, John GH. Identification, Isolation and characterization of a novel azoreductase from Clostridium perfringens. Anaerobe 2012; 18(2): 229-234. [DOI:10.1016/j.anaerobe.2011.12.006]
39. He H, Chen Y, Li X, Cheng Y, Yang C, Zeng G. Influence of salinity on microorganisms in activated sludge processes: A review. International biodeterioration and biodegradation 2017; 119: 520-527. [DOI:10.1016/j.ibiod.2016.10.007]
40. Carliel CM, Barclay SJ, Naidoo N, Bukley CA, Mulholland DA, Senior E. Anaerobic decolorisation of reactive dyes in conventional sewage treatment processes. Water SA 1994; 20: 341-344.
41. Manu B, Chaudhari S. Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process biochemistry 2003; 38(8): 1213-1221. [DOI:10.1016/S0032-9592(02)00291-1]
42. Macwana SR, Punj S, Cooper J, Schwenk E, John GH. Identification and isolation of an azoreductase from Enterococcus faecium: Oklahoma State University; Current issues in molecular biology 2010; 12(1): 43-48.
43. Misal SA, Lingojwar DP, Shinde RM, Gawai R. Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Process biochemistry 2011; 46(6): 1264-1269. [DOI:10.1016/j.procbio.2011.02.013]
44. Moutaouakkil A, Zeroual Y, Dzayri FZ, Talbi M, Lee K, Blaghen M. Purification and partial characterization of azoreductase from Enterobacter agglomerans. Archives of biochemistry and biophysics 2003; 413(1): 139-146. [DOI:10.1016/S0003-9861(03)00096-1]
45. Tian F, Guo G, Zhang C ,Yang F, Hu ZH, Liu C, Wang SW. Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium. International journal of biological macromolecules 2019; 123: 1062-1069. [DOI:10.1016/j.ijbiomac.2018.11.175]
46. Eslami M, Amoozegar MA, Asad S. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium halomonas elongata. International journal of biological macromolecules 2016; 85: 111-116. [DOI:10.1016/j.ijbiomac.2015.12.065]
47. Punj S, John GH. Purification and identification of an FMN-dependent NAD (P) H azoreductase from Enterococcus faecalis. Current issues in molecular biology 2009; 11(2): 59-65.
48. Gromova YA, Orlova AO, Maslov VG, Fedorov AV, Baranov A. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes. Nanoscale research letters 2013; 8: Article number: 452 (2013). [DOI:10.1186/1556-276X-8-452]
49. Annas KI, Gromova YA, Orlova AO, Maslov VG, Fedorov AV, Baranov AV. Photoinduced dissociation of complexes of cadmium selenide quantum dots with azo dye molecules. Journal of optical technology 2014; 81(8): 439-443. [DOI:10.1364/JOT.81.000439]
50. Chang S, Zhang X, Wang Z, Han D, Tang J, Bai Z, Ahong H. Alcohol-soluble quantum dots: enhanced solution processability and charge injection for electroluminescence devices. Journal of selected topics in quantum electronics 2017; 23(5): 1-8. [DOI:10.1109/JSTQE.2017.2688706]
51. Zhao C, Bai Z, Liu X, Zhang Y, Zou B, Zhong H. Small GSH-capped CuInS2 quantum dots: MPA-assisted aqueous phase transfer and bioimaging applications. ACS applied materials and interfaces 2015; 7(32): 17623-17629. [DOI:10.1021/acsami.5b05503]
52. Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H. Hydroxyl-terminated CuInS2 based quantum dots: toward efficient and bright light emitting diodes. Chemistry of materials 2016; 28(4): 1085-1091. [DOI:10.1021/acs.chemmater.5b04480]
53. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chemistry and biology 2011; 18(1): 10-24. [DOI:10.1016/j.chembiol.2010.11.013]
54. Ma Q, Su X. Recent advances and applications in QDs-based sensors. Analyst 2011; 136: 4883-4893. [DOI:10.1039/c1an15741h]
55. Dibyendu D, Jaba S, Roy AD, Bhattacharjee D, Hussain SA. Development of an ion-sensor using fluorescence resonance energy transfer: Sensors and Actuators B: Chemical 2014; 195: 382-388. [DOI:10.1016/j.snb.2014.01.065]
56. Oh E, Hong MY, Lee D, Hun Nam SH,Yoon HC, Kim HS. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Journal of the american chemical society 2005; 127(10): 3270-3271. [DOI:10.1021/ja0433323]
57. Lovell JF, Chen J, Jarvi MT, Cao WG, Allen AD, Liu Y, Tidwell TT, Wilson BC, Zheng G. FRET quenching of photosensitizer singlet oxygen generation. The journal of physical chemistry B 2009; 113(10): 3203-3211. [DOI:10.1021/jp810324v]
58. Rojas-Cervellera V, Raich L, Akola J, Rovira C. The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster. Nanoscale 2017; 9(9): 3121-3127. [DOI:10.1039/C6NR08498B]
59. Zhang Y, Clapp A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors (Basel) 2011; 11(12): 11036-11055. [DOI:10.3390/s111211036]
60. Frasco M, Chaniotakis N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors (Basel) 2009; 9(9): 7266-7286. [DOI:10.3390/s90907266]
61. Roy MD, Herzing AA, Lacerda SHDP, Becker ML Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. Chemical communications 2008; 18: 2106-2108. [DOI:10.1039/b800060c]
62. Vo N, Ngo HD, Vu DL, Duong AP, Lam QV. Conjugation of E. coli O157:H7 antibody to CdSe/ZnS quantum dots. Journal of nanomaterials 2015; 8. [DOI:10.1155/2015/265315]
63. Javidparvar AA, Ramezanzadeh B, Ghasemi E. Effects of surface morphology and treatment of iron oxide Javidparvar nanoparticles on the mechanical properties of an epoxy coating. Progress in organic coatings 2016; 90: 10-20. [DOI:10.1016/j.porgcoat.2015.09.018]
64. Javidparvar AA, Ramezanzadeh B, Ghasemi E. The effect of surface morphology and treatment of Fe3O4 nanoparticles on the corrosion resistance of epoxy coating. Journal of the Taiwan Institute of chemical engineers 2016; 61: 356-366. [DOI:10.1016/j.jtice.2016.01.001]
65. Javidparvar AA, Naderi R, Ramezanzadeh B, Bahlakeh G. Graphene oxide as a pH-sensitive carrier for targeted delivery of eco-friendly corrosion inhibitors in chloride solution: Experimental and theroretical investigations. Journal of industrial and engineering chemistry 2019; 72: 196-213. [DOI:10.1016/j.jiec.2018.12.019]
66. Javidparvar AA, Naderi R, Ramezanzadeh B. Designing a potent anti-corrosion system based on graphene oxide nanosheets non-covalently modified with cerium/benzimidazole for selective delivery of corrosion inhibitors on steel in NaCl media. Journal of molecular liquids 2019; 284: 415-430. [DOI:10.1016/j.molliq.2019.04.028]
67. Jiménez-López J, Rodrigues S, Ribeiro D, Ortega-Barrales P, Medina AR, Santos JLM. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica acta part A: molecular and biomolecular spectroscopy 2019; 212: 246-254. [DOI:10.1016/j.saa.2019.01.005]
68. Nasirzadeh K, Nazarian S, Gheibi Hayat SM. Inorganic nanomaterials: A brief overview of the applications and developments in sensing and drug delivery. Journal of applied biotechnology reports 2016; 3(2): 395-402.
69. Palmer T. Kinetics of single-substrate enzyme catalysed reactions. In: Understanding enzymes. England: Prentice Hall/Ellis Horwood; 1995; pp. 107-127.
70. Cornish-Bowden A. Fundamentals of enzyme kinetics (4th edition). Germany: Wiley-Blackwell Weinheim; 2012.
71. Prieto-Simón B, Fàbregas E. Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosensors and bioelectronics 2004; 19(10): 1131-1138. [DOI:10.1016/j.bios.2003.10.010]
72. Teymourian H, Salimi A, Hallaj R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Biosensors and bioelectronics 2012; 33(1): 60-68. [DOI:10.1016/j.bios.2011.12.031]
73. Tetianec L, Chaleckaja A, Kulys J, Janci R, Marcinkeviciene L, Meskiene R, Stankevciute J, Meskys R. Characterization of methylated azopyridine as a potential electron transfer mediator for electroenzymatic systems. Process biochemistry 2017; 54: 41-48. [DOI:10.1016/j.procbio.2017.01.006]
74. Ooi T, Shibata T, Sato R, Ohno H,Kinoshita S,Thuoc TL, /taguchi S. An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Applied microbiology and biotechnology 2007; 75(2): 377-386. [DOI:10.1007/s00253-006-0836-1]
75. Qi J, Schlömann M, Tischler D. Biochemical characterization of an azoreductase from rhodococcus opacus 1CP possessing methyl red degradation ability. Journal of molecular catalysis B: enzymatic 2016; 130: 9-17. [DOI:10.1016/j.molcatb.2016.04.012]
76. Zhou M, Chen X, Xu Y ,Qu J, Jiao L, Zhang H, Chen H, Chen X. Sensitive determination of Sudan dyes in foodstuffs by Mn-ZnS quantum dots. Dyes and pigments 2013; 99(1): 120-126. [DOI:10.1016/j.dyepig.2013.04.027]
77. Zhang J, Na L, Jiang Y, Han D, Lou D, Jin L. A fluorescence-quenching method for quantitative analysis of Ponceau 4R in beverage. Food chemistry 2017; 221: 803-808. [DOI:10.1016/j.foodchem.2016.11.100]
78. Mazlan SZ, Lee YH, Hanifah SA. A new Laccase based biosensor for tartrazine. Sensors (Basel) 2017; 17(12): 2859. [DOI:10.3390/s17122859]
79. Yin H, Zhou Y, Ai S, Chen Q, Zhu X, Liu X, Zhu L. Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. Journal of hazardous materials 2010; 174(1-3): 236-243. [DOI:10.1016/j.jhazmat.2009.09.041]
80. Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003; 302(5644): 442-445. [DOI:10.1126/science.1088525]
81. Härmä H, Soukka T, Lövgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clinical chemistry 2001; 47(3): 561-568. [DOI:10.1093/clinchem/47.3.561]
82. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise F, Webb W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300(5624): 1434-1436. [DOI:10.1126/science.1083780]
83. Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert opinion on drug delivery 2008; 5(3): 263-267. [DOI:10.1517/17425247.5.3.263]
84. Wang HZ, Wang HY, Liang RQ, Ruan KC. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta biochimica et biophysica sinica 2004; 36(10): 681-686. [DOI:10.1093/abbs/36.10.681]
85. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN, et al. Targeted quantum dot conjugates for siRNA delivery. Bioconjugate chemistry 2007; 18(5): 1391-1396. [DOI:10.1021/bc060367e]
86. Franciscon E, Piubeli F, Fantinatti-Garboggini F, de Menezes CR, Silva IS, Cavaco-Paulo A, Grossman MJ, Durrant LR. Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. Enzyme and microbial technology 2010; 46(5): 360-365. [DOI:10.1016/j.enzmictec.2009.12.014]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb