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ABSTRACT 
 

Background: Azo dyes are the most widely used synthetic colorants in the textile, food, pharmaceutical, cosmetic, 
and other industries, accounting for nearly 70% of all dyestuffs consumed. Recently, much research attention has 
been paid to efficient monitoring of these hazardous chemicals and their related metabolites because of their 
potentially harmful effect on environmental issues. In contrast to the complex and expensive instrumental 
procedures, the detection system based on the QDs with the superior optochemical properties provides a new 
era in the pollution sensing and prevention. Methods: We have developed a QD-enzyme hybrid system to probe 
MR in aqueous solutions using a fluorescence quenching procedure. Results: The azoreductase enzyme catalyzed 
the reduction of azo group in MR, which can efficiently decrease the FRET between the QDs and MR molecules. 
The correlation between the QDs photoluminescence recovery and MR enzymatic decolorization at the neutral 
phosphate buffer permitted the creation of a fluorescence quenching-based sensor. The synthesized biosensor 
can be used for the accurate detection of MR in a linear calibration over MR concentrations of 5-84 μM, with the 
LOD of 0.5 μM in response time of three minutes. Conclusion: Our findings revealed that this fluorometric sensor 
has the potential to be successfully applied for monitoring a wide linear range of MR concentration with the 
relative standard deviation of 4% rather than the other method. DOI: 10.29252/ibj.25.1.8 
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INTRODUCTION 

 

zo dyes are the most widely used synthetic 

colorants in the textile, food, pharmaceutical, 

cosmetic, and other industries, accounting for 

nearly 70% of all dyestuffs consumed
[1-4]

. More than 

15% of the used azo dyes are released into textile 

effluents through prepping fiber, dyeing, and printing 

processes
[5-7]

. Accordingly, industrial effluents often 

contain remaining dye components, which may lead to A 
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water contamination and become a threat to the public 

health
[8]

. Although the EU criteria for the classification 

of dangerous substances have defined that the acute 

toxicity of azo dyes is rather low
[9]

, after releasing into 

the aquatic environment, these substances may cleave 

to potentially carcinogenic amines that may have a 

harmful impact on the ecosystem and human 

health
[8,10]

.  

Nowadays, with great global progress and rapid 

increase in demand for chemicals, the maintenance of 

human health and wellbeing remains a major concern 

and one of the most important technological objectives. 

To achieve this goal, the development of reliable 

detection methods for accurate determination of 

pollutions in industrial samples is an urgent need to 

facilitate the prevention of disease. Various 

instrumental techniques have been utilized for textile 

wastewater detection and purification, including 

activated carbon adsorption
[11]

, instrumental 

coagulation-flocculation
[12]

, advanced oxidation 

processes
[13]

, and photocatalytic decomposition
[14]

, as 

well as chromatography procedures such as TLC
[15]

, 

GC/MS
[16]

, and HPLC
[17,18]

. Despite the extensive use 

of the above-mentioned routine processes in the 

wastewaters, these techniques have a number of 

limitations, including laboratory dependent, high cost, 

low efficiency, complex operational options, high 

sludge formation, and limited applicability
[19,20]

. 

Therefore, a great interest in exploring and developing 

biological sensing systems to monitor the 

concentration of dye substances in aqueous solutions is 

growing up
[21,22]

.  

In the last decade, significant advances in 

nanobiotechnology have been created using powerful 

optoelectronic labels, known as QDs, which can be 

used in sensor and target-specific probe applications
[23-

28]
. QDs, semiconductor nanoparticles with diameters 

of 2-10 nanometers, have attracted attention because of 

their great optical properties compared to traditional 

organic fluorophores
[29-31]

. For instance, QDs exhibit 

broad absorption with narrow, size-tunable and 

symmetric fluorescence spectra (full width at half 

maximum ~25–40 nm)
[32]

, strong resistance to 

photobleaching
[33]

, and high molar absorption 

coefficients (~10–100 × that of organic dyes) with 

significant luminescence quantum yield
[34]

.   

Many studies have illustrated the ability of numerous 

Gram-positive and Gram-negative bacteria to 

decolorize a large variety of azo dyes
[35-38]

. It is 

generally accepted that the textile wastewater is 

characterized by extremely high salinity ranging from 

3.5-20%
[39]

. The biological removal of color from 

textile wastewater in this salty environment is 

performed only in the presence of halotolerant and 

halophilic microorganisms, which are able to grow and 

thrive under such harsh conditions
[40,41]

. Over the past 

years, some investigations reported the isolation and 

characterization of bacterial azoreductases from 

various bacteria
[42-44]

. However, to date, only two genes 

encoding azoreductase enzyme from halophilic 

bacteria have been isolated and identified
[45,46]

. As the 

first study, Eslami and coworkers in 2016 isolated and 

characterized an efficient halophilic azoreductase 

enzyme from Halomonas elongata IBRC-M10216 

(DSM 2581T)
[46]

. In this study, we focused on the 

capability of this halophilic azoreductase in the 

detection of azo dyes. Halomonas elongate reduces azo 

pollutions produced by textile industry via the use of 

azoreductase enzyme. This enzyme, which were 

previously been cloned and characterized in our 

laboratory, not only has the ability to respond to such 

harsh environment but also exhibits more efficient 

kinetic parameters in comparison to enzymes isolated 

from other bacteria
[42,45,47]

. Hence, in the present study 

for the first time, we have used the Halomonas 

azoreductase to construct a QDs-based sensor, which 

allows the monitoring of azo dyes. In 2013, Gromova 

et al.
[48]

 developed an effective complex of 

semiconductor CdSe/ZnS QDs with the molecules of 

azo dyes in polymer track membranes. They reported 

that the azo dyes, as an electron acceptor on the surface 

of QDs, could strongly quench the emission of QDs 

due to their spectral overlap. In another work Annas et 

al.
[49]

 have demonstrated that the complex of 

CdSe/ZnS QDs possessed photo-induced dissociation 

properties with the molecule of azo dye under the 

function of external radiation of various spectral 

powers and compositions. They found that the energy 

transfer from the QDs to the azo dye molecule 

extremely contributes to the dissociation rate of the 

complexes.  

Considering these studies, the aim of this work was 

to describe a water-soluble MPA-capped CdSe/ZnS 

QD-azoreductase enzyme system for monitoring MR, 

as a model of azo compounds. In other words, 

combination of catalytic function of azoreductase 

enzyme and superior optoelectronic properties of QDs 

brings up an opportunity to design a preliminarily 

sensitive QD-based biochemical assay for monitoring 

azo dyes. 

 

 

MATERIALS AND METHODS 

 

 Materials  
Isopropyl β-D-1-thiogalactopyranoside, cadmium 

oxide (99.99%), NaOH, zinc acetate (99.9%, powder), 

NaCl, selenium (99.9%, powder), sulfur (99.9%, 
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powder), TOP (90%), OLA (90%), K2HPO4, KH2PO4, 

OA (90%), 1-dodecanethiol (98%), ODE (90%), and 

MPA (99.8%) were purchased from Sigma Aldrich (St. 

Louis, MO, USA). Trypton, yeast extract, and glycine 

were obtained from Scharlau, Spain. Glycerol, SDS, 

NiSO4, MR, imidazole, and EDTA were obtained from 

Merck (Darmstadt, Germany). His-tag purification 

resin and NADH were provided by Roche (Germany). 

All the reagents were of pro-analysis quality and used 

in the experiments as received. 

 

Protein expression and purification 
The recombinant azoreductase enzyme utilized in 

this study has been produced previously
[46]

. Briefly, 

azoreducatse enzyme originally isolated from 

Halomonas elongata. The E. coli BL21 (DE3) 

transformants were grown in LB medium containing 

ampicillin at 37 °C. Subsequently, when the OD at 600 

nm reached about 0.5, IPTG was added to a final 

concentration of 0.1 mM. After harvesting the cells by 

centrifugation, the supernatant was loaded onto Ni-

NTA agarose column, and then bound proteins were 

eluted with 200 mM of imidazole in the elution buffer. 

 

Azoreductase activity assay   
MR, a common mono-azo dye, was selected for 

further studies. The stock solution of MR was prepared 

by dissolving 0.02 g of MR in 100 mL of 60% ethanol. 

The enzyme assay mixture, including 0.1 mM of 

NADH solution (as a cofactor) and varying 

concentrations of MR (4–40 µM; as substrate) were 

added step by step to the phosphate buffer of pH 7 to 

reach a final assay volume of 0.4 mL. The reaction was 

initiated with 1-min delay from the addition of 

azoreductase enzyme, and subsequently, the absorption 

of NADH at 340 nm over 1 min period decreased 

through the reaction. In the next step, a calibration 

graph was generated under the optimum experimental 

conditions according to the well-known Beer-Lambert 

equation at 340 nm. 

 

Synthesis of OLA-capped CdSe/ZnS QDs 

The OLA-capped CdSe/ZnS core shell QDs were 

prepared according to the previous explanations
[50-52]

. 

Briefly, 1.2 mmol of cadmium oxide, 12 mmol of zinc 

acetate, 18 mL of OA, and 60 mL of ODE were ‍mixed 

in a 250-mL round flask. The mixture was degassed at 

120 °C under vacuum for 20 min. For the creation of a 

clear CdSe core solution in the next step, the 

temperature was set at 300 °C under nitrogen flow with 

stirring. At this temperature, the Se precursor solution 

containing 1.3 mmol of selenium powder, 13.3 mmol 

of sulfur powder, and 10 mL of TOP were swiftly 

loaded into the reaction flask to promote the growth of 

QDs for 10 min. The mixture of 15 mmol of Zn(OAc), 

10 mL of OLA, 15 mL of ODE, and 15 mL of DDT 

was degassed at 80 °C for 30 min, and then the 

temperature was raised up to 120 °C in nitrogen 

atmosphere until the Zn stock solution became 

transparent. In the following phase, the shell precursor 

was injected dropwise (~2 mL/min) into the hot flask 

for a period of times to increase the efficiency of QDs 

for energy transfer. After purification and precipitation 

by adding excess methyl alcohol, anhydrous, and 

acetone, the resulting CdSe/ZnS QDs were dispersed in 

a nonpolar solvent (methyl benzene, chloroform) or 

dried to powder. The preparation of water-soluble 

CdSe/ZnS QDs for biosensing applications was  based 

on a previous study
[52]

 in which the ligand exchange 

method was applied to replace OLA at the surface of 

nanoparticles with MPA
[52]

. For this purpose, 2 mL of 

MPA was added to the dispersion of 60 mg of OLA-

capped QDs and 5 mL of N,N-Dimethylformamide in a 

100-mL round flask. The degassed reaction mixture 

was incubated at 130 °C until a clear solution was 

formed with the protection of nitrogen. After 

precipitating MPA-capped QDs by adding 2-propanol, 

the pellet was re-dissolved in alkaline buffer solution 

(pH ∼12) for storage. 

 

Instrumentation and apparatus  
During the preparation of recombinant azoreductase 

and characterization of MR and CdSe/ZnS QDs, 

ultraviolet-visible and fluorescence spectroscopic 

studies were carried out using Perkin Elmer Lambda 

25 UV/VIS spectrophotometer and Perkin Elmer 

Luminescence Spectrometer LS 55, respectively. FTIR 

spectroscopy (Perkin Elmer) was conducted on the 

KBr pellets of the synthesized QDs in the region of 

400–4000 cm
-1

. The TEM images of the purified 

CdSe/ZnS QDs were captured on a JEOL JEM-2100F 

microscope operating at 200 kV. The XRD 

measurements of CdSe/ZnS QDs were performed on a 

Rigaku D/Max-2500 X-ray diffractometer. 

 

Fluorescence experiments 

The basic sample for fluorescence analysis was 

created by adding 200 µL of 5 mM of NADH stock 

solution to 20 µL of QDs in 50 mM of phosphate 

buffer solution (pH 7). In order to create the 

fluorescence quenching-based detection procedure for 

azo dyes, QDs with PL peak at 520 nm, as a donor, 

was coupled with MR, as an acceptor, in energy 

transfer processes. In all the experiments, the 

fluorescence  intensities   were   measured    under   the 

excitation and emission wavelengths of 365 and 520 

nm, respectively. To explore the effect of different 

amounts  of  MR  on  the fluorescence intensity of QD,  
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Fig. 1. XRD patterns of CdSe/ZnS core-shell QDs. 
 

 

we diluted 100 µL of QD mother solution to 3 mL with 

phosphate buffer solution of pH 7, in the presence of 

MR over the range of 10 to 150 µM. Next, the 

fluorescent intensity of each mixture was measured 

spectrophotometrically at 520 nm after incubating for 3 

min. In the next step, for studying the impact of 

azoreductase enzyme on each sample, 24 µg/ml of the 

enzyme was transferred to tubes. All the experiments 

in this study were repeated at least three times. 

 

 

RESULTS AND DISCUSSION 
 

  Due to the stability and xenobiotic nature, azo dyes 

are not completely degraded by conventional 

wastewater treatment procedures. Therefore, it is 

important to detect these pollutants in industrial 

effluents before their discharge into the environment. 

This work aimed to develop a fluorescence quenching-

based method, which has received growing interest in 

the QD-based sensing field, for monitoring MR before 

discharging into the surface water. The detection was 

carried out by FRET modulation between QDs and MR 

component
[53-57]

. Because the synthesized OLA-capped 

CdSe/ZnS QDs were initially soluble in organic 

solvents, it was necessary to render them water soluble 

for biological applications. The aqueous phase transfer 

of samples was achieved by replacing the OLA using 

MPA. 

MPA has two functional groups, carboxyl and thiol. 

The thiolic end displayed a strong electron affinity to 

the zinc in the outer ZnS shell, and thus the initial 

surface ligand could be replaced with MPA. Carboxyl 

group existing in the molecular structure also provided 

the water solubility to QDs because of its strong 

participation in hydrogen bond formation
[51,52,58-60]

. 

The successful phase transfer of these nanoparticles 

after ligand exchange could be directly illustrated by 

 

the transparency of the resulting solutions. The 

structural properties of the CdSe/ZnS semiconductor 

QDs were investigated by XRD test. According to the 

XRD pattern (Fig. 1), the sample had three main peaks 

at 2θ = 28.8, 48.2, and 56.9 degrees, which could be 

indexed as (111), (220), and (311) crystal plates, 

respectively. Based on the corresponding reference 

(#65-0309), the peaks of CdSe/ZnS QDs were shifted 

to higher 2θ values. This shift may be attributed to the 

compressive strain of CdSe core by ZnS shell.  

Therefore, these peaks confirmed the successful 

fabrication of CdSe/ZnS QDs
[61,62]

.  

The crystalline size of the synthesized QDs 

calculated by Debye–Scherer equation was found to be 

~3.52 nm. The surface treatment of the synthesized 

QDs can be understood from the FTIR spectra (Fig. 2). 

As it can be seen in this Figure, the FTIR spectra of 

CdSe/ZnS-OLA showed a sharp peak at 3744 cm
-1

, 

which is related to the stretching vibration of N-H 

bonds, indicating that the NH2-containing ligand was 

adsorbed on the synthesized QD surface
[63]

. The broad 

absorption peak at about 3200-3600 cm
-1

 can be 

assigned to the –OH stretching vibration of physically 

adsorbed water molecules in CdSe/ZnS and CdSe/ZnS-

MPA samples
[64]

. The significant reduction of the peak 

in CdSe/ZnS-OLA sample indicates that the sample 

has more hydrophobic property than the two other 

samples. Both C–H symmetric and asymmetric 

stretching vibrations show a characteristic peak at 

about 3000 cm
-1[65]

. The presence of C=O and C–O 

vibration peaks at 1635 and 1488 cm
-1

, respectively, 

resulted that the MPA molecules successfully replaced 

with OLA components on the QD surface
[66]

. 

The TEM images of the synthesized QDs are shown 

in Figure 3, which depicts that the nanoparticles are 

spherical in shape and about 10.5 nm in diameter. 

Also, the results revealed that the well-dispersed 

nanoparticles possessed a uniform particle size. The 

MR absorption bond and emission spectrum of QDs 

are shown in Figure 4. It can be observed from this 

Figure that the absorption spectrum of MR exhibits a 

significant absorption band between 450 and 550 nm 

coincident with the emission spectrum of QDs. In other 

words, the emission spectrum of QDs, as donor 

molecules, overlapped with the absorption band of 

MR, as an acceptor. Therefore, it is expected that this 

spectral overlap permits a non-radiative energy transfer 

between the donor QDs and acceptor MR molecules. 

When energy is transferred from the excited electronic 

state  QDs  to  the  nearby  acceptor  chromophore,  the 

FRET unveils itself through decreasing or quenching 

of the donor fluorescence
[67]

. 
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Fig. 2. FTIR spectra of CdSe/ZnS, CdSe/ZnS-OLA, and CdSe/ZnS-MPA QDs. 

 

 

  To investigate the modification of PL intensity of 

QDs by the addition of MR (as quencher), the MR was 

added to QDs in the cuvette, and then the fluorescence 

of QDs was checked by using a fluorescence 

spectrometer. Figure 5 shows how the presence of MR 

in the reaction cell is able to quench the emission of 

QDs. As observed, the PL intensity of QDs up to 95% 

decreased gradually as the amount of MR increased in 
the cuvette.  

To study the influence of enzyme on the modulation 

of FRET efficiency between QDs and MR in separate 

experiments, the PL intensity of QD-NADH mixture, 

as the reference sample, was studied in different 

combinations of MR, enzyme, and MR-enzyme 

mixture (Fig. 6). For this purpose, the fluorescence 

intensity of QDs before and after the enzymatic 

cleavage of the quencher was compared. The results 

depicted in Figure 6 demonstrated that no quenching 

effect of enzyme on QDs emission was detected in the 

presence of enzyme alone, whereas MR significantly 

suppressed the PL intensity of QDs. 

By incorporation of the enzyme and MR into the 

reaction mixture, upon the formation of substrate-

enzyme complexes as well as reduction of the azo 

group in MR, the PL intensity of QDs increased 

significantly from less than 50 to 260. These 

experiments provide enough evidence in support of this 

fact that the quenching could be only due to the 

interaction between the CdSe/ZnS nanoparticles in the 

excited  state  as  the  donor  and  MR  molecules as the 

acceptor.   In  this  way,  the  correlation  between   MR 

concentration and QDs emission enhancement provides  

 
 

 
 

 

Fig. 3. TEM image of the synthesized QDs with the scale bars 

of 100 nm (A) and 10 nm (B). 
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Fig. 4. Spectral overlap between QDs emission (20 μl of QD 

stock solution) and MR (50 μM) absorbance resulted in the 

fluorescence energy transfer and quenching. 

 

 

a basis for the creation of a QDs-based sensor for 

accurate detection of MR. This nanoparticle-based MR 

sensor comprises a photostable semiconductor QDs 

and azoreductase enzyme. A schematic illustration of 

MR monitoring by the QD-enzyme hybrid system is 

depicted in Figure 7. As shown in the Figure, the QD 

donors and MR acceptors constitute an efficient FRET 

pair wherein the MR can strongly quench the emission 

of QDs. Since the fluorescence of QDs is very 

sensitive to their surface conditions, in the presence  

of azoreductase enzyme in reaction, the enzymatic 

reduction of MR occurred at the surface of QDs, 

leading to a decrease in the FRET efficiency between 

the  CdSe/ZnS  QDs  and  MR molecules. Accordingly, 

 

 
 

Fig. 5. Fluorescence quenching of QDs (80 μl of QD stock 

solution) in the presence of various concentrations of MR.  

we can see a correlation between the azo dye removal 

rate and PL intensity enhancement of QDs, which is 

very useful for monitoring MR. 

It is important to ensure that whether the presence of 

azoreductase enzyme in the reaction mixture has a 

direct significant effect on the FRET efficiency 

between MR and QDs. In this regard, a reaction cell 

containing a reference sample with 80 μM MR in a 

total volume of 3 mL with phosphate buffer was 

treated with the successive concentrations of the 

enzyme (from 4 to 36 µg/ml). In order to explore the 

effect of increasing azoreductase enzyme 

concentrations on the azo group reduction rate and 

QD:MR FRET behavior, we used the high saturating 

MR and NADH concentrations in the reaction
[69,70]

. By 

increasing the enzyme concentration and then 

incubation for 3 min, the  azo  dye  removal  rate will 

be  enhanced gradually, and then decreasing the energy 
 

 

 
 

Fig. 6. Quenching effect of 20 µM of MR (methyl red) on the 

QD (quantum dot) emission (20 μl of QD stock solution) in the 

presence of NADH (N; 0.3 mM) and enzyme (E; 24 µg/ml). 

 
 

acceptors per QD donors leads to the high restoration 

of QD fluorescence. Quenching effect of 80 μM MR in 

the presence of various azoreductase enzyme 

concentrations as well as quenching kinetic effect of 50 

μM MR at different incubation times can be seen in 

Figure 8, which represents that the energy transfer 

between MR and QDs is very sensitive to the enzyme 

concentration in the range of 4 to 24 µg/ml. The 

addition of enzyme more than 24 µg/ml to the reaction 

cell had no effect on the fluorescence of QD solution, 

signifying that there is not any more free substrate. 

This observation suggests that there is a positive 

correlation between the enzyme concentration and the 

emission enhancement of QDs. In order to further 

characterize the effective function of enzyme on the 

FRET  modulation  between  QDs  and MR, we carried 

out   the   same   quenching   study  in  the  presence  of 
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Fig. 7. Schematic illustration of MR monitoring by the QD-enzyme hybrid system[68]. 
 

 

enzyme over a period of time. In this context, the QDs 

PL restoration was examined in the presence of 50 μM 

of MR and 24 µg/ml of azoreductase enzyme in a total 

volume of 3 mL at different incubation times ranging 

from 30 to 300 s. Time course of incubation in Figure 

8B shows that by increasing the incubation time, more 

MR molecules were converted to the aromatic amines, 

and the plateau level of QD PL restoration was reached 

after approximately 180-s incubation, meaning all the 

MR molecules in the reaction medium have to be 

taking part in the reaction in this time. In other words, 

from the relationship between the change of PL 

intensity of QD and incubation time, it could be known 

that the PL intensity of QD was relatively insensitive to 

the incubation time longer that 180 s. Based on these 

results, the 24-µg∕ml concentration of azoreductase 

enzyme and incubation time of 180 s were chosen as 

the optimum condition for the subsequent experiments 

of FRET-based detection method. It is clear from the 

Figure 8 that the NADH, as cofactor, in this system 

shows a week quenching effect on the QD emission 

with low efficiency. As indicated in Figure 8, NADH, 

as cofactor, in this system can slightly induce the QD 

fluorescence quenching in comparison with MR. The 

enzymatic reduction of MR was synchronized with the 

oxidation of NADH to NAD
+
 and also with the 

removal of the small quenching effect of NADH. In 

other words, as expected during the enzymatic 

reduction, the emission intensity of QD gradually 

enhanced with increasing oxidation of NADH to 

NAD
+
.   

To gain further insight into the sensor, the linear 

working range and the low detection limit of the 

nanobiosensor for MR were evaluated as a simple 

model of azo dyes. To calibrate this sensor, different 

concentrations of MR were injected into the reference 

sample to quench the QDs, and azoreductase enzyme 

was added afterwards to each the quenched sample and 

allowed to incubate for 3 min. The MR concentration 

was then plotted against the fluorescence intensity of 

QDs to generate a calibration plot in three separate 

experiments (Fig. 9A).  

Using the calibration curve, the linear range of 

detection for MR (referred to as quencher) was 5 to 84 

μM and the lowest detectable concentration of MR 

without the effect of background signal was 0.5 μM. 

This high relative LOD in comparison with the other 

fluorescent sensors is due to the slight interference of 

NADH in the QD emission intensity through the 

resonance energy transfer. Owing to this issue, we 

added NADH to QD solution as a basic sample for the 

subsequent fluorescent analysis throughout the  

study. With the incremental enzymatic reduction of 

MR,  the fluorescent intensity of QD was progressively  
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Fig. 8. Effect of enzyme concentration and time on the MR-

QD FRET ratio. (A) Quenching effect of 80 μM of MR in the 

presence of various azoreductase enzyme concentrations (4, 8, 

12, 16, 20, 24, 28, 32, and 36 µg/ml). (B) Quenching kinetic 

effect of 50 μM of MR at different incubation times of 30 s to 

300 s in the presence of 24 µg/ml of enzyme concentration. 

 
 

increased along with the oxidation of NADH to NAD
+
 

and then removal of quenching effect of NADH.  

Because the titration of restoration of QD emission 

after this enzymatic reaction was used to determine 

MR, a reasonable explanation for the high LOD of the 

sensor is likely the NADH quenching effect. It should 

be noted that this study is the first step toward the  

QD-enzyme  hybrid  system  utilization  into  azo  dyes 

detection, and the research into solving this drawback 

is in progress. 

In our future work, we intend to focus on the 

optimization of this nanobiosensor together with the 

other recombinant enzymes such as laccase. The 

repeatability of the proposed MR nanobiosensor 

response  to  20 µM  MR  was   further  examined.  The 

relative standard deviation was 4% for nine 

consecutive experiments. To evaluate the QD-based 

sensor, we performed a comparison between this 

fluorescent sensor and the typical spectroscopic 

enzyme assay as a color degradation reaction. Some 

previous studies have reported a number of 

NAD
+
/NADH-based systems as suitable conventional 

methods for monitoring NADH
-
associated reactions

[71-

73]
. In those investigations, the detection processes 

were on the basis of optical modifications taking place 

in the medium after the the enzymatic oxidation of 

NADH. Reduction of the azo groups was carried  

out using the enzyme-mediated transfer of reducing 

equivalents generated by the oxidation of coenzymes  

to azo dyes through a two-step ping-pong  

Bi-Bi mechanism
[74]

. In this study, as shown in  

Figure 10, during the enzymatic reaction, NADH 

transferred electrons to the azo dye as the electron 

acceptor, forming the corresponding oxidized form, 

NAD
+
. Accordingly, this approach provides simple 

capabilities for spectrophotometric assay of methyl 

based on the azoreductase enzymatic activity coupled 

with the absorption modification of NADH as cofactor 

in 340 nm. The oxidation of NADH and the amounts of 

MR consumed during the reaction were monitored by 

UV absorption spectroscopy. 

The data in the calibration curve for NADH 

oxidation in Figure 9B indicate that the response of the 

NADH-based method for MR was linear in the range 

of 4 to 16 µM  with the LOD of 1.6 µM. The data from  
 

 

 
 

 

 

 
 

Fig. 9. Linear range of detection. (A) Calibration curve for 

MR monitoring with this nanobiosensor in the linear range of 5 

to 84 μM of MR and LOD of 0.5 μM. (B) Kinetic study of the 

NADH-based reduction of MR with the linear range of 4 to 16 

µM of MR and LOD of 1.6 µM. 
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Fig. 10. Enzymatic reduction of MR[75]. 

 

 

the comparison of QD-based system with azoreductase 

enzyme assay revealed that the fluorescent approach 

detected a better correlation between the PL intensity 

and MR concentration in the upper linear detection 

range rather than the other method.  

Besides conventional methods, with emerging the 

QDs into the research fields, some QD-based detecting 

systems have been reported for various azo dyes. In 

2013, Zhou et al.
[76]

 introduced a new luminescence 

sensing system based on the quenched fluorescence 

signal  of  the  OA-functionalized Mn-ZnS QDs for the 

sensitive determination of Sudan dyes in foodstuffs with  

LODs  of  2.1-32.7  ng/ml  for different dyes. In a 

similar study in 2017, Zhang J et al.
[77]

 used the CdTe 

QDs to present a fluorescence-quenching method for 

the quantitative analysis of  Ponceau  4R  as a food azo 

dye in the linear response of 2.5-25 µg/ml. To date, 

only one enzyme-based sensor has been reported to 

detect azo dyes. Mazlan et al.
[78]

 developed a new 

biosensor for the determination of azo dye tartazine 

based on the immobilization of laccase enzyme on the 

functionalized methacrylate-acrylate microspheres.  

Yin et al.
[79]

 also fabricated a new amperometric  

sensor based on immobilized CoTe QDs and  

PAMAM dendrimer onto glassy carbon electrode to 

detect bisphenol A, as a hazardous material in the 

environment, with the linear range of 1.3 × 10
-8

 to  

9.89 × 10
-6

 M. In addition to sensing and diagnostics 

applications of QDs, several studies have indicated the 

medical significance of QDs in various fields such as 

drug delivery, therapeutics, and imaging
[80-83]

. A QD-

based procedure was developed by Wang et al.
[84] 

for 

the detection of ovarian cancer marker CA125 by 

conjugating the streptavidin-coated QDs to CA125 

monoclonal antibodies. In another study, a PEGylated 

QD core, as a scaffold, was utilized as a delivery 

vehicle to release the siRNA into specific subcellular 

targets
[85]

. In this study, for the first time, using the 

superior optical properties of QDs and the specificity of 

enzymatic reaction, we proposed a simple nano-

biosensor for MR detection. We intend to focus on this 

goal with the novel ideas such as utilization of the other 

more efficient enzyme such as laccase, which can 

catalyzes the decolorization of azo dyes with no need to 

NADH
[86]

. Serious concerns related to cadmium-based 

toxicity leads to the fabrication of cadmium-free QDs 

for the environmental safety purposes. To improve the 

manufacture of nanocrystals in hot-injection process, 

efforts have been ongoing to use efficient solvents with 

low toxicity and more stability at high temperature 

instead of TOP. In order to facilitate the application of 

this suggested sensor for in situ analysis set up, this 

sensor with different real company effluents is ongoing. 

Therefore, the creation of analytical techniques such as 

the present sensor with emphasis on food safety and 

environmental monitoring fields coordinates well with 

human wellbeing. 

In the present work, we have demonstrated the use of 

a water-soluble CdSe/ZnS QD azoreductase enzyme 

nanobiosensor based on FRET for the fluorescent 

detection of MR that could be extended for different 

substrates. The results showed that the PL intensity of 

CdSe/ZnS QDs increased during the gradual enzymatic 

decolorization of MR, which leads to a significant 

decrease in the FRET signal between the QDs and MR. 

Enzymatic reduction of soluble MR produced a 

concentration-dependent QD PL recovery, due to the 

elimination of the MR away from the QDs. This good 

linear correlation between the signal intensity 

enhancement and the MR concentration in aqueous 

solution carries new capabilities for optical sensing of 

MR based on a fluorescence quenching method.  

In summary, this work reports the first example of the 

utilization of QD enzyme hybrid system as a facile, 

simple, and cost-effective sensor for the detection of 

methyl red as a typical azo dye based on the 

fluorescence quenching. 
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