Volume 25, Issue 1 (1-2021)                   IBJ 2021, 25(1): 62-67 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hojati Z, Omidi F, Dehbashi M, Mohammad Soltani B. The Highlighted Roles of Metabolic and Cellular Response to Stress Pathways Engaged in Circulating hsa-miR-494-3p and hsa-miR-661 in Alzheimer’s Disease. IBJ 2021; 25 (1) :62-67
URL: http://ibj.pasteur.ac.ir/article-1-3238-en.html
Background: Among different roles of miRNAs in AD pathogenesis, hsa-miR-494-3p and hsa-miR-661 functions are poorly understood. Methods: To obtain the gene targets, gene networks, gene ontology, and enrichment analysis of the two miRNAs, some web servers were utilized. Furthermore, the expressions of these miRNAs were analyzed by qRT-PCR in 36 blood sera, including 18 Alzheimer’s patients and 18 healthy individuals. Results: The in silico analysis demonstrated the highlighted roles of metabolic and cellular response to stress pathways engaged in circulating hsa-miR-494-3p and hsa-miR-661 in AD. The qRT-PCR analysis showed that the downregulated expression level of hsa-miR-661 was statistically significant (p < 0.05). Also, the ROC curve of hsa-miR-661 displayed the significant AUC (p = 0.01). Conclusion: Based on our findings, the metabolic and cellular responses to stress pathways are closely connected to these two miRNAs functions. Besides, the qRT-PCR and Roc curve determined hsa-miR-661 could be as a biomarker for diagnosis or prognosis of AD patients.

1. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews 2001; 81(2): 741-766. [DOI:10.1152/physrev.2001.81.2.741]
2. Mattson MP. Pathways towards and away from Alzheimer's disease. Nature 2004; 430(7000): 631-639. [DOI:10.1038/nature02621]
3. Nicolas FE, Lopez-Martinez AF. MicroRNAs in human diseases. Recent patents on DNA and gene sequences 2010; 4(3): 142-154. [DOI:10.2174/187221510794751659]
4. Papagregoriou G, Erguler K, Dweep H, Voskarides K, Koupepidou P, Athanasiou Y, Pierides A, Gretz N, Felekkis KN, Deltas C. A miR-1207-5p binding site polymorphism abolishes regulation of HBEGF and is associated with disease severity in CFHR5 nephropathy. Plos one 2012; 7(2): e31021. [DOI:10.1371/journal.pone.0031021]
5. Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. Journal of clinical investigation 2013; 123(1): 11-18. [DOI:10.1172/JCI62876]
6. Cosset E, Petty T, Dutoit V, Tirefort D, Otten-Hernandez P, Farinelli L, Dietrich PY, Preynat-Seauve O. Human tissue engineering allows the identification of active miRNA regulators of glioblastoma aggressiveness. Biomaterials 2016; 107: 74-87. [DOI:10.1016/j.biomaterials.2016.08.009]
7. Weng JH, Yu CC, Lee YC, Lin CW, Chang WW, Kuo YL. miR-494-3p induces cellular senescence and enhances radiosensitivity in human oral squamous carcinoma cells. International journal of molecular sciences 2016; 17(7): 1092. [DOI:10.3390/ijms17071092]
8. Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spectrum disorder. Front psychiatry 2016; 7: 176. [DOI:10.3389/fpsyt.2016.00176]
9. Roncon P, Soukupovà M, Binaschi A, Falcicchia C, Zucchini S, Ferracin M, Langley S, Petretto E, Johnson MR, Matcussi G, Michelucci R, Rubboli G, Simonato M. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy-comparison with human epileptic samples. Scientific report 2015; 5: 14143. [DOI:10.1038/srep14143]
10. Haenisch S, Zhao Y, Chhibber A, Kaiboriboon K, Do LV, Vogelgesang S, Barbaro NM, Alldredge BK, Lowenstein H, Cascorbi I, Kroetz D. SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and non-focal brain tissue of therapy-resistant epilepsy patients. Neurobiol disease 2015; 77: 127-140. [DOI:10.1016/j.nbd.2015.02.025]
11. Schipper HM, Maes OC, Chertkow HM, Wang E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene regulation and systems biology 2007; 1: 263-274. [DOI:10.4137/GRSB.S361]
12. Tian Y, Yang W, Song J, Wu Y, Ni B. Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Molecular cell biology 2013; 33(15): 2810-2816. [DOI:10.1128/MCB.00205-13]
13. Hoffmeister A, Tuennemann J, Sommerer I, Mössner J, Rittger A, Schleinitz D, Kratzsch J, Rosendahl J, Klötino N, Stahl T, Rossner S, Paroni F, Maedler K, Kovacs P, Bluher M . Genetic and biochemical evidence for a functional role of BACE1 in the regulation of insulin mRNA expression. Obesity 2013; 21(12): E626-E633. [DOI:10.1002/oby.20482]
14. Bhajun R, Guyon L, Pitaval A, Sulpice E, Combe S, Obeid P, Haquet V, Ghorbel I, Laiaunie C, Gidrol X. A statistically inferred microRNA network identifies breast cancer target miR-940 as an actin cytoskeleton regulator. Scientific report 2015; 5: 8336. [DOI:10.1038/srep08336]
15. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease report of the nincds‐adrda work group under the auspices of department of health and human services task force on alzheimer's disease. Neurology 1984; 34(7): 939-944. [DOI:10.1212/WNL.34.7.939]
16. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH. Introduction to the recommendations from the National Institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers and dementia 2011; 7(3): 257-262. [DOI:10.1016/j.jalz.2011.03.004]
17. Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, Dai J, Ma H, Hu Z, Shen H, Xu, Y, Jin G. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. British journal of cancer 2014; 110(9): 2291-2299. [DOI:10.1038/bjc.2014.119]
18. Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, Martins RN, Rowe CC, Macaulay SL, Masters CL, Hill AF. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Molecular psychiatry 2015; 20(10): 1188-1196. [DOI:10.1038/mp.2014.127]
19. Fiţa IG, Enciu AM, Stănoiu BP. New insights on Alzheimer's disease diagnostic. Romanian journal morphol embryology 2011; 52(3 Suppl): 975-979.
20. Garza-Manero S, Arias C, Bermúdez-Rattoni F, Vaca L, Zepeda A. Identification of age-and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease. Frontiers in cellular neuroscience 2015; 9: 53. [DOI:10.3389/fncel.2015.00053]
21. Villa C, Fenoglio C, De Riz M, Clerici F, Marcone A, Benussi L, Ghidoni R, Gallone S, Cortini F, Sepenrte M, Cantoni C, Fumagalli G, Boneschi MB, Cappa S, Binetti G, Franceschi M, Rainero I, Giordana MT, Mariani C, Bresolin N, Scarpini E, Galimberti D. Role of hnRNP-A1 and miR-590-3p in neuronal death: genetics and expression analysis in patients with Alzheimer disease and frontotemporal lobar degeneration. Rejuvenation research 2011; 14(3): 275-281. [DOI:10.1089/rej.2010.1123]
22. Vassar R, Kovacs DM, Yan R, Wong PC. The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. Journal of neuroscience 2009; 29(41): 12787-12794. [DOI:10.1523/JNEUROSCI.3657-09.2009]
23. Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, Pronzato M, Danni O, Smith MA, Perry G, Tabato M. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiology of disease 2002; 10(3): 279-288. [DOI:10.1006/nbdi.2002.0515]
24. Guglielmotto M, Aragno M, Autelli R, Giliberto L, Novo E, Colombatto S, Danni OL, Parola M, Smith MA, Perry G, Tamagno E, Tabato M. The up‐regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. Journal of neurochemistry 2009; 108(4): 1045-1056. [DOI:10.1111/j.1471-4159.2008.05858.x]
25. Pluta R, Furmaga-Jabłońska W, Maciejewski R, Ułamek-Kozioł M, Jabłoński M. Brain ischemia activates β-and γ-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer's disease. Molecular neourobiology 2013; 47(1): 425-434. [DOI:10.1007/s12035-012-8360-z]
26. Tesco G, Koh YH, Kang E, Cameron A, Das S, Sena-Esteves M, Hiltunen M, Yang SH, Zhong Z, Shen Y, Slimpkins J, Tanzi RE. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron 2007; 54(5): 721-737. [DOI:10.1016/j.neuron.2007.05.012]
27. Blasko I, Beer R, Bigl M, Apelt J, Franz G, Rudzki D, Ransmayr G, Kampfl A, Schilebs R. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease β-secretase (BACE-1). Journal of neural transmission 2004; 111(4): 523-536. [DOI:10.1007/s00702-003-0095-6]
28. Imaizumi K, Miyoshi K, Katayama T, Yoneda T, Taniguchi M, Kudo T, Tohyama M. The unfolded protein response and Alzheimer's disease. Biochimica et biophysica acta 2001; 1536(2-3): 85-96. [DOI:10.1016/S0925-4439(01)00049-7]
29. Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown M, Goldstein JL. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Molecular cell 2000; 6(6): 1355-1364. [DOI:10.1016/S1097-2765(00)00133-7]
30. Prostko CR, Brostrom MA, Malara EM, Brostrom CO. Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. Journal of biological chemistry 1992; 267(24): 16751-16754.
31. Mouton-Liger F, Paquet C, Dumurgier J, Bouras C, Pradier L, Gray F, Hugon J. Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochimica et biophysica acta 2012; 1822(6): 885-896. [DOI:10.1016/j.bbadis.2012.01.009]
32. Lodi R, Tonon C, Calabrese V, Schapira AHV. Friedreich's ataxia: from disease mechanisms to therapeutic interventions. Antioxidant and redox signaling 2006; 8(3-4): 438-443. [DOI:10.1089/ars.2006.8.438]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb