Volume 25, Issue 1 (1-2021)                   IBJ 2021, 25(1): 41-46 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mostaan S, Ghasemzadeh A, Ehsani P, Sardari S, Shokrgozar M A, Abolhassani M et al . In silico Analysis of Pasteurella multocida PlpE Protein Epitopes As Novel Subunit Vaccine Candidates. IBJ 2021; 25 (1) :41-46
URL: http://ibj.pasteur.ac.ir/article-1-3227-en.html
Background: Pasteurella multocida is a Gram-negative, non-motile, non-spore forming, and aerobic/anaerobic cocobacillus known as the causative agent of human and animal diseases. Humans can often be affected by cat scratch or bite, which may lead to soft tissue infections and in rare cases to bacteremia and septicemia. Commercial vaccines against this agent include inactivated, live attenuated, and non-pathogenic bacteria. Current vaccines have certain disadvantages such as reactogenicity or reversion to virulence. Therefore, the aim of this study was to reach a multi-epitope vaccine candidate that could be serotype independent and covers most incident serotypes of P. multocida. Methods: In this study, reverse vaccinology strategy was used to identify potentially immunogenic and protective epitopes. First, multiple alignments of different sequences of Pasteurella lipoprotein E (PlpE) from various serotypes of P. multocida were analyzed to identify the conserved regions. Bioinformatics tools were then applied to predict and select epitopes for further studies. Results: Three different conserved immunogenic regions were selected according to the selected criteria, and their various sequential orders were evaluated structurally by in silico tools to find the best order. Conclusion: In searching the epitopes of PlpE to design a new vaccine candidate against pasteurellosis, we found the region 1 + region 2 + region 3 (without any linker between regions) of epitope, including the regions of PlpE protein of P. multocida, as the appropriate serotype independent vaccine candidate against pasteurellosis.
Type of Study: Full Length/Original Article | Subject: Related Fields

1. Orsini J, Perez R, Llosa A, Araguez N. Non-zoonotic Pasteurella multocida infection as a cause of septic shock in a patient with liver cirrhosis: A case report and review of the literature. Journal of global infectious diseases 2013; 5(4): 176-178. [DOI:10.4103/0974-777X.122016]
2. Torres A, Menéndez R, Wunderink RG. Bacterial Pneumonia and Lung Abscess. In: Murray and Nadel's. Textbook of Respiratory Medicine. Elsevier; 2016. p. 557-582. [DOI:10.1016/B978-1-4557-3383-5.00033-6]
3. Wu JR, Shien JH, Shieh HK, Chen CF, Chang PC. Protective immunity conferred by recombinant Pasteurella multocida lipoprotein E (PlpE). Vaccine 2007; 25(21): 4140-4148. [DOI:10.1016/j.vaccine.2007.03.005]
4. Lubroth J, Rweyemamu MM, Viljoen G, Diallo A, Dungu B, Amanfu W. Veterinary vaccines and their use in developing countries. Scientific and technical review of the office international des epizooties (Paris) 2007; 26(1): 179-201. [DOI:10.20506/rst.26.1.1737]
5. Hopkins BA, Huang BCTHM, Olsonc LD. Differentiating turkey postvaccination isolants of Pasteurella multocida using arbitrarily primed polymerase chain reaction. Avian diseases 2016; 42(2): 265-274 [DOI:10.2307/1592476]
6. Mariana S, Hirst R. The immunogenicity and pathogenicity of Pasteurella multocida isolated from poultry in Indonesia. Veterianary nicrobiology 2000; 72(1-2): 27-36 [DOI:10.1016/S0378-1135(99)00184-4]
7. Ahmad TA, Rammah SS, Sheweita SA, Haroun M, El-Sayed LH. Development of immunization trials against Pasteurella multocida. Vaccine 2014; 2(8): 909-917. [DOI:10.1016/j.vaccine.2013.11.068]
8. Hansson M, Nygren PÅ, Ståhl S. Design and production of recombinant subunit vaccines. Biotechnology and applied biochemistry 2000; 32(2): 95-107. [DOI:10.1042/BA20000034]
9. Harper M, John M, Edmunds M, Wright A, Ford M, Turni C, Blackall PJ, Cox A, Adler B, Boyce JD. Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure. Vaccine 2016; 34(14): 1696-1703. [DOI:10.1016/j.vaccine.2016.02.017]
10. Gatto NT, Dabo SM, Hancock RE, Confer AW. Characterization of, and immune responses of mice to, the purified OmpA-equivalent outer membrane protein of Pasteurella multocida serotype A:3 (Omp28). Veterinary microbiology 2002; 87: 221-235. [DOI:10.1016/S0378-1135(02)00068-8]
11. Burns KE, Ruiz J, Glisson JR. Evaluation of the effect of heating an oil-emulsion Pasteurella multocida bacterin on tissue reaction and immunity. Avian diseases 2003; 47(1): 54-58. [DOI:10.1637/0005-2086(2003)047[0054:EOTEOH]2.0.CO;2]
12. Poolperm P, Apinda N, Kataoka Y, Suriyasathaporn W, Khajohnsak T, Takuo S, Nattawooti S. Protection against Pasteurella multocida conferred by an intranasal fowl cholera vaccine in Khaki Campbell ducks. Japanese journal of veterinary research 2018; 66(4): 239-250.
13. Gong Q, Qu N, Niu M, Qin C, Sun X, Qin C, Cheng M, Sun X, Zhang A. Immune responses and protective efficacy of a novel DNA vaccine encoding outer membrane protein of avian Pasteurella multocida. Veterinary immunology and immunopathology 2013; 152(3-4): 317-324. [DOI:10.1016/j.vetimm.2013.01.001]
14. Robinson HL, Pertmer TM (2000) DNA vaccines for viral infections : basic studies and applications. Advances in virus research 2000; 55: 1-74. [DOI:10.1016/S0065-3527(00)55001-5]
15. Liao CM, Huang C, Hsuan SL, Chen ZW, Lee WC, Liu CI, Winton JR, Chien MS. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs. Vaccine 2006; 24(1): 27-35. [DOI:10.1016/j.vaccine.2005.07.079]
16. Mostaan S, Ghasemzadeh A, Sardari S, Shokrgozar MA, Nikbakht Brujeni G, Abolhassani M, Ehsani P, Asadi Karam MR. Pasteurella multocida vaccine candidates: A systematic review. Avicenna journal of medical biotechnology 2020; 12(3): 140-147.
17. Hatfaludi T, Al-Hasani K, Gong L, Boyce JD, Ford M, Wilkie LW, Quinsey VN, Dunstone MA, Hoke DE, Adler B. Screening of 71 P. multocida proteins for protective efficacy in a fowl cholera infection model and characterization of the protective antigen PlpE. PLoS one 2012; 7(7): 1-11. [DOI:10.1371/journal.pone.0039973]
18. Okay S, Özcengiz E, Gürsel I, Özcengiz G (2012) Immunogenicity and protective efficacy of the recombinant Pasteurella lipoprotein E and outer membrane protein H from Pasteurella multocida A:3 in mice. Research in veterinary science 2012; 93(3): 1261-1265. [DOI:10.1016/j.rvsc.2012.05.011]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb