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ABSTRACT

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the TME
and supporting the mechanisms by which cancer cells undertake the EMT. EMT, a complex of phenotypic changes,
promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the
EMT, immune cells (both native and adaptive) can reciprocally influence the tumor cells features, promote EMT
and negatively regulate the anticancer immune response. In this review, we look over the role of EMT in crosstalk
between tumor cells and the immune system, with specific emphasis on breast tumors. Finally, we suggest that
understanding the role of immune cells in cancer progression could create new opportunities for diagnostic and
therapeutic interventions in cancer combination therapy. DOI: 10.29252/ibj.25.1.1
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INTRODUCTION

he TME consists of tumor cells plus a variety of

accessory stroma cell types that may have a

selective advantage in tumor survival and
metastasis as a result of crosstalk between tumor and
stroma cells). Infiltrating immune cells, vascular
endothelial cells, and cancer-associated fibroblasts are
examples of the cells present in the TME and serve
unique roles in allowing cancer cells to acquire
phenotypes in favor or to the detriment of tumor
progression™™?, the latter of which is the focus of this
report. Comprehensive understanding of the TME of

List of Abbreviations:

breast cancer has revealed strong evidence to propose
that TME and the associated molecules contribute to
the development of tumor growth and metastasis.
The critical elements of TME in breast cancer may
help us to discover the new biomarkers, including
immunological and immunosuppressive markers with
a function in tumor progression®. In this context,
the role of immune cells in EMT have been well
studied™®.

EMT process is a transition from non-motile to
motile cells in which tumor cells lose cellular polarity
due to certain molecular changes, including the loss of
E-cadherin and occluding as well as the gain of

BCC, breast cancer cells; CCL, chemokine [C-C motif]; CXCL12, C-X-C motif chemokine 12; EMT, epithelial-mesenchymal transition;
GM-CSF, granulocyte-macrophage colony-stimulating factor; LAG-3, lymphocyte activation gene 3; LGALS3, class |-related chain
galectin-3; MDSC, myeloid-derived suppressor cells; MMP9, matrix metalloproteinase 9; NK, natural killer; OSM, oncostatin M;
PD-1, programmed cell death; PDGF, platelet-derived growth factor; PD-L, programmed cell death-ligand (L); PGE2, prostaglandin E2;
SIGIRR, single Ig and TIR domain containing; sMICA, soluble major histocompatibility complex; SPARC, secreted protein acidic and
rich in cysteine; TAM, tumor-associated macrophage; TAN, tumor-associated neutrophil; TIGIT, T cell immunoreceptor with Ig and
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vimentin, fibronectin, and N-cadherin®”. Indeed, EMT
is the main cause of heterogeneity of carcinoma cells,
resulting in the alteration of their biological
functions and phenotypic characteristics®®. It is worth
mentioning that immune editing may cause the tumor
cells to lose their capability of expressing tumor
antigens, consequently leading to a poor recognition of
the tumor cells by the immune cells, and a more
enhanced EMT progression®. In other words, the
immune system creates an immunosuppressive TME,
permitting tumor cells to evade the immune
recognition and destruction!®*°!.

Knowing that tumor stroma cells can either enhance
or inhibit tumor cell progression, a great deal of
interest has been taken toward elucidating the
underlying mechanism behind immune activation or
immune tolerance. In the current review, we focus on
the immunosuppressive role of the stroma cells in
favor of tumor progression. In order to define the role
of immune system in EMT process, it is worthy to
describe different types of immune cells in TME. In
this regard, recent studies have highlighted that EMT is
associated with the presence of innate immune cells,
including TAMs polarized to M2, MDSCs, TANs and
NK cells along with adaptive immune cells
compromising two broad types of T lymphocyte (CD4"
and CD8" T cells) and Tregst** ™.

Key immune cell types in TME

One of the cell populations of the innate immune
system influencing the TME is macrophages. They
originate from the circulating monocytes that are
recruited to TME, mostly by chemokines such as
MCP-1/CCL2 and CSF-1 derived from tumor cells or
mesenchymal stem cells, which were later polarized
and denoted as TAMs!"*®!. Besides chemokines, TAMs
can be recruited by hypoxia condition presents in
tumors, which subsequently increase the hypoxia-
inducible factor-a production and pro-angiogenesis
factors like VEGF, basic fibroblast growth factor,
TNF-0, and CXCLI12, assisting in remodeling the
extracellular matrix and causing angiogenesis
promotion™™¥. It has been reported that isolated
TAMs from breast cancer tissues produce high
amounts of pro-tumor cytokines, including CCL18,
CCL17, CCL22, and IL-10 and reveal a
CD206""/human leukocyte antigen-DR'" phenotype
relating to the TME immunosuppressive phenotype!®!.
Interestingly, TAMs can acquire different functional
phenotypes depending on TME signals; they are
capable of having either the classical anti-tumor M1
type in response to IFN-y or Iipopolysaccharide[21] or
the alternative pro-tumor M2 type by IL-4, IL-10, IL-
13, TGF-B and lactic acid®”. Behavior of the tumor

cells varies according to the type of TAMs. In this
context, M1 TAMs are highly phagocytic and
influence the Thl response through the secretion of the
inflammatory factors like 1L-1, IL-6, IL-12, and TNF-
a, reactive oxygen species, and inducible nitric oxide
synthase®?2. Contrary to M1, M2 TAMs participate
in Th2 response and cancer progression and affect
anticancer therapies via the secretion of the
immunosuppressive cytokine such as TGF-f and
mitogenic growth factors, including PDGF and
epidermal growth factor!®*?!. The effect of TAMs is
proportionate to the level of cytokines in TME, i.e. the
low level of TNF-o causes inflammation and cell
survival and upregulates negative regulators of
apoptosis; however, the high level of TNF-a promotes
the apoptosis and cell death.

Beside cytokines, TAMs are known to enhance the
expression of COX2, which correlates with the
secretion of IL-6, PGE2,and MMP9 and promotes
EMT process in cancer cells, including breast cancer,
by activating the Akt pathway and stabilizing the
EMT-promoting transcription factors like SNAIL”2,
Furthermore, the positive feedback loop between GM-
CSF secreted from breast cancer cells and CCL18 from
M2-TAMs facilitates EMT process, induces tumor
progression and reduces the patient’s survival in breast
cancer®. Moreover, GM-CSF triggers the function of
the transcription factors such as STAT5, NF-xB as
well as ERK signaling in TAMs to increase their
recruitment and enhance their polarization to M2 type
and finally cause TGF-B1 expression®.. It is important
to point out that due to a strong correlation
between ferritin light chain released from M2-TAMs
and aggressive phenotype of breast tumors, these
tumors have to be more intensively followed-up!®®.
Interestingly, TAMs constitute a major component (5-
40%) of the tumor mass in breast cancers, which are
found fourfold higher than normal mass in the early
benign proliferative regions, while they increase to
twentyfold in the invasive front of the tumors where
EMT is usually initiated. This observation could be
suggested as a diagnostic tool to distinguish the
metastatic from non-metastatic region®*?". In line with
it, the metastatic tumor microenvironment is
characterized by staining three parts, including
migrative cancer cells, TAMs, and endothelial cells. In
breast cancer, in particular, tumor microenvironment of
metastasis facilitates metastasis, and due to this reason,
it is proposed as a promising target in clinical
application and drug development®. In addition,
vessel-associated macrophages assist the intravasation
of cancer cells into vasculature through the secretion of
epidermal growth factor, which it is crucial for EMT
induction. Overall, it can be suggested that M2
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TAMs promote the cancer cells toward EMT and
might have a chance in remodeling of TME™. More
notable is that chemotherapy combining with M2 TAM
deletion would 1provide an encouraging approach in
cancer therapy!®®.,

Tumor-infiltrating lymphocytes

EMT process is associated with a decrease in the
number of CD4" and CD8" T cells in TME, which is
likely related to the expression of immunosuppressive
cytokines such as IL-10 and TGF-B! as well as to the
inhibitory immune checkpoint molecules, including
PD-L1, PD-L2, cytotoxic T-lymphocyte antigen-4, T-
cell immunoglobulin and mucin domain-containing-3,
B7-H3, CD73, and CD47%*I  Breast cancer
progression could also be affected by dysregulating
different T-cell subsets in TME. In this regard, the
presence of tumor-infiltrating lymphocytes in TNBC
and human epidermal growth factor receptor 2" breast
tumor subtypes is associated with a good prognosis as
well as favorable chemotherapy responset™. On the
contrary, the high level of TGF-B, as an effector
cytokine influencing the differentiation of CD4",
promotes the differentiation of CD4"FOXP3* Tregs
and inhibits the function of Th1 cells®. Importantly,
Tregs have a decisive role in the suppression of
TMER. 1t is significant to note that human epidermal
growth factor receptor 2-positive breast cancer
individuals have a higher level of Tregs compared with
the healthy ones™. EMT mediated the expression of
immunosuppressive molecules like indoleamine 2,3-
dioxygenase in TAMs and upregulation of an
extracellular matrix protein such as SPARC in BBCs,
which promotes the infiltration of Tregs, mast cells,
and MDSCs into TME™**]. Nonetheless, SPARC is a
protein with dual functions, of which its immune-
suppressive activity is the subject of interest,
considering its relatedness to EMT.,

Furthermore, immune checkpoint molecules can
regulate EMT process. It was revealed that the
expression of PD-L1 on breast tumors is connected
with resistance to CD8"-mediated cell killing!®*). On
the other side, PD-L1 expression in the aggressive
tumor cells induces PD-1 on T cells, which
consequently dampens cytotoxic T-lymphocyte attack,
resulting in the escape of tumor cells from recognition
by the immune system®. Although PD-L1 expression
is significantly higher in the invasive than non-invasive
breast cancers, it is promising due to favorable
outcomes of recent monoclonal antibodies against PD-
1 or PD-L1 in cancer immunotherapy®®. Among the
immune checkpoints, tumor-derived CD73 in human
breast cancers was also found to significantly suppress
CTL and NK responsest®. In this context,
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CD4" Foxp3™ Tregs are a key source of host CD73 in
TME, which is related to poor prognosis and
chemoresistance in the TNBC and contributes to EMT-
mediated trastuzumab resistance and TGF-B—mediated
tumor immune escape!*”.

A T-cell subpopulation that is well-known for the
anti-tumor function is NKT cells, which act as a bridge
between the innate and adaptive immune system(***,
These types of T cells in collaboration with NK-
cells and Thl cytokines demonstrate a strong anti-
tumor immunity. Interestingly, Tregs can suppress
differentiation of NKT cells leading to reduction in the
number of NKT cells in the advanced cancer patients.
Meanwhile, MDSCs could also prevent the anti-tumor
response of NKT cells via TGF-B production™®*.
Indeed, if the immunosuppressive feature of the
microenvironment overcomes due to the presence of
both immunosuppressive factors and cells, it would
lead to tumor survival and eventual cancer progression.

NK cells

NK cells are innate lymphoid cells known for
their immune surveillance function against cancer
cells, which is dependent on the balance between
NK cell-activating and -inhibiting ligands expressing
in tumor cellsi*“**]. Indeed, NK cells are heterogeneous
and  characterized by two common phenotypes:
CD56™MMCD16%™™  (CD56”"™)  and  the
CD56"™/CD16™9" (CD56"™)“647] The CD56°"™ NK
cells mostly enhance IFN-y Froduction and represent a
strong cytotoxic function “81Interestingly, breast
tumors recruit the CD*™" NK cells into the TME
through releasing a high level of CCL19 and a low
level of CXCL12, highIiPhting the role of NK cells in
cancer patient’s survival®”. EMT process reduces E-
cadherin and induces cell adhesion molecule 1
expression in the tumor cells, leading to the
enhancement of NK cell cytotoxicity susceptibility!*®!.
In this context, it has been shown that the upregulation
of cell adhesion molecule 1, as an NK cell-activating
ligand, is associated with the patient’s survival in
breast cancer individuals and results in the metastasis
reduction*“*®]. It is important to note that the high
cytotoxic capacity of NK cells belongs to the ones
present in the blood circulation and lymph nodes,
which can eliminate the disseminated metastatic cancer
cells within the first 24 hours®™. It has been suggested
that breast tumors, independent of the subtype, secrete
a panel of factors that modify NK cell functions
causing tumor cells to escape from anti-tumor
immunity function of NK cells*¥. It has also been
reported that EMT inducer factors such as TGF-p1,
PGE2, indoleamine 2,3-dioxygenase, sSMICA, and
LGALS3 are produced by a variety of immune
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suppressor cells like tumor-associated fibroblasts,
Tregs, MDSCs and even tumor cells attenuated NK
cell-mediated  cytotoxicity™ 3. Another important
event occurs in TME is the expression
of the immune-checkpoints such as PD-L1, T-cell
immunoglobulin  and mucin domain-containing-3,
TIGIT, and SIGIRR by NK cells similar to that
happens in tumors, which results in tumor adaptive
resistance to NK cells immune surveillancel
Importantly, using the specific monoclonal antibodies
for blocking these checkpoints can improve the NK-

mediated Ytotoxmlty and inhibit  metastasis
dissemination®

TANSs

Neutrophils  are  abundant  myeloid-derived

circulating cells, although they can migrate to a
number of tissues®. In this context, accumulating
evidence has demonstrated that neutrophils constitute a
significant part of the TME as TANs with both pro-
and anti-tumorigenic properties®. TANs are recruited
into TME through releasing the cytokines con5|st|ng of
IL-8, G-CSF, and IL-17 by tumor cells®®. TANs
frequently represent two phenotypes: anti-tumorigenic
(N1) or pro-tumorigenic (N2) phenotypel®®. N1 TANs
upregulate OSM upon interaction with BBCs, leading
to an inhibitory effect on tumor cell proliferation. In
contrast, some studies have revealed that neutrophils
upregulate the OSM upon GM-CSF produced by
BBCs, which in turn enhances VEGF productlon and
promotes tumor growth and metastasis®”. In another
study, cathepsin G has been reported as a neutrophil-
derived serine protease, which enhances mlgratlon and
invasion potential of breast tumor cells¥d. N2 TANs
can educate the other immune cells toward the pro-
tumor type in the TME and further stimulate
angiogenesis, leading to the poor prognosis of patients.
In other words, neutrophils secrete TGF-$ and OSM
within the TME and drive the macrophages
differentiation toward M2 type®®. Remarkably,
neutrophils interplay with T cells in the TME, ie. T
cells enhance the G-CSF expression, which further
leads to neutrophll expan3|on and modifies the
neutrophil phenotype®. Then the altered neutrophils
release inducible nltrlc oxide synthase, which
subsequently reduces the cytotoxicity of CD8 T cells in
the TME and enhances breast cancer progression™. A
strong correlation presents between N2 TAN in the
TME and breast cancer subtypes, as TANs are
predommantly observed in TNBC subtype of breast
cancer®l. Consistently, a high expression level of TGF-
B was observed in TNBC contributing to the
neutrophil chemotaxis; however, TGF-p may also
induce a pro-tumorigenic N2 TAN phenotypet.

Moreover, tumor cells could activate neutrophils in a
cell-by-cell contact manner causing the expression of
hyaluronan from tumor cells that effectively promotes
tumor cell migration'®”. In addition, some studies have
pointed out the importance of TANs in cancer
progression in the late-stage of tumors wherein chronic
inflammation could be developed. Inversely, TANs in
the early-stage of tumors may exert anti-tumor
propertiest®®

MDSCs

MDSCs often arise as a result of cytokines such as
IL-1B, IL-6, and IL-8 in TME"®Y. Migration of MDSCs
to breast tumors is regulated by kruppel-like
factor-4 transcription factor through CXCL5/CXCR2
axis, leading to EMT processi®d. MDSCs are
heterogeneous immature myeloid cells that develop in
spleen, peripheral blood, or tumor tissues with
potent immune suppressive activities in TME
and contribute to tumor growth and resistance
to various chemotherapies®. MDSCs, mostly consist
of two subsets: the monocytic (M)-MDSC
(CD11b* Ly6G Ly6C" ) and the polymorphonuclear-
MDSC (CD11b" Ly6G" Ly6C"). However, it has been
reported that CD45 Ly6Gm'Ly6C'°CD11b is the
dominant phenotype recruiting the TME of aggressive
breast cancer. SPARC and CXCR2 are two factors
expressed in MDSCs and required for the acquisition
of MDSC suppressive phenotypel®®4® MDSC
differentiation is facilitated by the tumor-derived
cytokines, including G-CSF, GM-CSF, VEGF, and
chemokines such as CCL2 and CXCL12[6266%%
Moreover, Thrombospondin 1 expression in the surface
of MDSC-derived exosomes also causes MDSCs
chemotaxis and migration!®*.

Of note, in the crosstalk between MDSCs and T cells
in TME, activated T cells stimulate STAT3
phosphorylation on MDSCs through IL-10, resulting in
the expression of immune checkpoint B7-H1"®. On
the other hand, the expression of B7-H1 ligands and
MHC class Il on MDSCs causes the upregulation of
two inhibitory molecules, PD-1 and LAG-3, on T cells,
which is associated with T cell dysfunction and
immunosuppressive  conditions™".  Additionally,
MDSCs play a significant role in FoxP3" Tregs
development as well as the expression of
immunosuppressive factors like IL-10 and COX2,
which suppress T cells immune responsel® ™. The
literature survey has demonstrated that the targeted
depletion of MDSCs in various cancers increases the
adaptive immunity and remodels the TME.

In conclusion, it would seem that broad determining
role of immune cells recruited to the tumor site through
cytokines and chemokines influence  cancer
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progression,

which in turn expand the new

opportunities for therapeutic interventions in cancer
combination therapy. By using agents to target
simultaneously cancer and stroma cells, the survival
outcomes and quality of life would be positively
altered. Moreover, the stroma compartments consist of
potential and specific tumor biomarkers that would be
valuable to assess the metastatic stage of cancer.
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