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ABSTRACT 
 

Breast cancer, as a heterogeneous disease, includes a wide range of pathological and clinical behaviors. Current 
treatment protocols, including radiotherapy, chemotherapy, and hormone replacement therapy, are mainly 
associated with poor response and high rate of recurrence. Therefore, more efforts are needed to develop 
alternative therapies for this type of cancer. Immunotherapy, as a novel strategy in cancer treatment, has a 
potential in treating breast cancer patients.  Although breast cancer has long been considered problematic to 
treat with immunotherapy, as it is immunologically "cold," numerous newer preclinical and clinical reports now 
recommend that immunotherapy has the capability to treat breast cancer patients. In this review, we highlight 
the different immunotherapy strategies in breast cancer treatment. DOI: 10.52547/ibj.25.3.140 
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INTRODUCTION 
 

hroughout the world, breast cancer is considered 

as one of the most prevalent cancer among 

women and the second most cancer 

worldwide
[1]

. Breast cancer is also more frequent in 

developed countries
[2]

, and annually, there is a 2% rise 

in its prevalence worldwide
[3]

. Such a rapid increase in 

the number of affected people has been reported  from 

countries with the low incidence of breast cancer
[4]

. In 

the Middle East, this cancer is ranked in the first place. 

Similarly,  in Iran, the incidence of breast cancer is 

estimated to be 23.1 per 100,000 women
[5]

, and the 

available data indicates that the disease prevalence has 

elevated in the country so that since 1999, it has stood 

in the first place among cancer cases in women 

nationwide
[6]

. In recent years, breast cancer is 

considered as a group of diseases, containing at least 

21 distinct histological subtypes and four main 

molecular subtypes, which are constantly correlated 

with distinguishing clinical presentations and/or 

outcomes
[7,8]

. The most common type of invasive 

breast cancer (more than 75%) is now histologically 

specified as “no special type,” and called “ductal” 

carcinomas. Invasive lobular carcinoma is the most 

prevalent special histologic subtype accounts for about 

15% of invasive breast cancers
[9]

. Table 1 summarizes 

the new classification of breast tumors reported by 

World Health Organization
[10]

. Breast cancer molecular 

subtypes are categorized through high-throughput 

microarray-based gene expression profiling. At the 

molecular level, there are four different molecular 

subtypes of breast cancer: luminal, normal breast-like, 

HER2, and basal-like. Luminal A (HR+/HER2-) is the 

most prevalent type of breast cancer that grows slower 

and tends to be less aggressive when compared with 

other subtypes. Luminal B (HR+/HER2+) is associated 

with poorer prognosis as it demonstrates a higher grade 

than luminal A (the higher proportion of breast   

cancer  patients dropped to grade III and IV category in  
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  Table 1. Histological typing of breast carcinomas[165] 
 

Non-invasive lobular neoplasia 

Lobular carcinoma in situ (classic, florid, and pleomorphic) 

DCIS 

DCIS of low nuclear grade 

DCIS of intermediate nuclear grade 

DCIS of high nuclear grade 

Invasive breast carcinoma 

Invasive breast carcinoma of no special type (including medullary pattern, invasive carcinoma with neuroendocrine differentiation, 

carcinoma with osteoclast-like stromal giant cells, pleomorphic pattern, choriocarcinomatous pattern, melanocytic pattern, oncocytic 

pattern, lipid-rich pattern, glycogen-rich clear cell pattern, and sebaceous pattern) 

Microinvasive carcinoma 

Invasive lobular carcinoma 

Tubular carcinoma 

Cribriform carcinoma 

Mucinous carcinoma 

Mucinous cystadenocarcinoma 

Invasive micropapillary carcinoma 

Carcinoma with apocrine differentiation 

Metaplastic carcinoma (low-grade adenosquamous carcinoma, [high-grade adenosquamous carcinoma], fibromatosis-like metaplastic 

carcinoma, spindle cell carcinoma, squamous cell carcinoma, metaplastic carcinoma with heterologous mesenchymal [e.g. chondroid, 

osseous, rhabdomyoid, neuroglial) differentiation, and mixed metaplastic carcinomas) 

Acinic cell carcinoma 

Adenoid cystic carcinoma 

Secretory carcinoma 

Mucoepidermoid carcinoma 

Polymorphous adenocarcinoma 

Tall cell carcinoma with reversed polarity 

Neuroendocrine neoplasms 

Neuroendocrine tumor (grades 1 and 2) 

Neuroendocrine carcinoma 

Papillary neoplasms 

Papillary ductal carcinoma in situ 

Encapsulated papillary carcinoma 

Solid papillary carcinoma (in situ and invasive) 

Invasive papillary carcinoma 

Epithelial-myoepithelial neoplasms 

Malignant adenomyoepithelioma 

Epithelial-myoepithelial carcinoma 

Tumors of the male breast 

In situ carcinoma 

Invasive carcinoma 
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luminal B)
[11,12]

. Basal-like (HR-/HER2-) cancers are 

known as triple negative since they are ER-, PR- and 

HER2-. The incidence rate of TNBC is very high in 

black women and those with a BRCA1 gene mutation. 

The worst prognosis can be found in this group of 

cancers
[13]

. In the last type of breast cancer, HER2-

enriched (HR-/HER2+) patients have the chance of 

targeted therapies. This novel immunotherapeutic 

strategy brings favorable outcomes for these 

patients
[14,15]

. 

 

Different mechanisms of immune evasion in breast 

tumors 

One of the major features of cancerous cell is its 

ability to escape and hide from adaptive immune 

responses
[16]

. Diverse mechanisms such as defective 

activation of tumor-directed T-cells, imperfect T-cell 

penetration into the tumor milieu, or emergence of 

resistance to immune cells action can participate in 

tumor evasion process
[17]

. Genomic instability, an 

evolving hallmark of breast cancer, resulted in the 

production of tumor neoantigens. Although these 

neoantigens can easily be distinguished by immune 

system and eradicated through T-cell function and 

immunity against tumor
[17,18]

, cells can demonstrate 

rather different immunogenic behaviors, conditional to 

different subtypes of breast cancer
[19]

. In the particular 

profiling study, suspicious calcifications are related to 

hampered immune system activity as well as ERBB2 

overexpression
[20]

. Thus, breast calcifications could be 

beneficial to the management of patients with breast 

cancer for immunotherapy. Historically, these tumors 

are immunologically silent
[17]

 or “cold” , which means 

the attendance of low neoantigen burden and negligible 

effector tumor-infiltrating lymphocytes. Due to an 

obstacle to T-cell-based immunotherapies when 

confronting with non-inflamed tumors, several studies 

have attempted to discover new approaches to expand 

immune cell infiltration to tumor microenvironment 

and subsequent improvement of patient’s prognosis. 

Besides, direct tumor cell damage through the local 

tumor hyperthermia, serves as another valuable 

immunotherapy strategy for cancer, which has shown 

promising results in breast cancer patients
[21-23]

. 

Hyperthermia augments tumor cell sensitivity to 

antitumor immunological responses by boosting tumor 

surface HLA-I polypeptide-related sequence A 

expression. This specific sequence sensitizes tumor cell 

to natural killer cells and CD8
+
 cell-mediated lysis 

through the elevated levels of heat shock proteins and 

increasing exosomes release from tumor cells, 

respectively
[21]

. Recognition of tumor cells is another 

key step toward a successful immune response. In this 

context, tumor immune escape can take place in high 

levels of estrogen. Excessive estrogen may attenuate 

IFN-γ signaling and HLA-II expression, with apparent 

negative effect in all immune cells
[24]

. Moreover, 

estrogens enhance tumor cell survival and proliferation 

gene expression, along with growth factors (i.e. VEGF 

and EGF
[25]

). Since the presence of estrogen has 

beneficial effects on tumor development, antiestrogen 

therapies maybe a logical approach to improve the 

response to immunotherapeutic agents. On the other 

hand, estrogen deprivation initiates transcriptional 

events in favor of the tumor evasion and metastasis in 

patients receiving adjuvant hormonal therapy joints 

with HER2-targeted agents
[26]

. Therefore, blocking the 

PD-1/PD-L1 pathway in combination with hormone 

therapies should be applied with caution. Considering 

the reasons mentioned above, targeting growth factors 

by conventional mAbs has positive immunotherapy 

consequences by refining APCs activity
[27,28]

. 

Resistance to mAb-based immunotherapies largely 

depends on possible pathways such as the activation of 

immuno-suppressive checkpoint pathways
[29]

. 

Although the blockade of the PD-1/PD-L1 pathway by 

FDA has been approved, atezolizumab appears to be 

among encouraging methods for immunotherapy. 

Indeed, it could achieve only 53% response rate for 

metastatic breast cancer versus 33% for the placebo 

group
[30]

. Similar to the PD-L1 pathway, PD-1 

inhibitors have demonstrated the modest but promising 

results when administrated in breast cancer 

patients
[17,19]

.  In this regard, PD-L1 status is 

considered the central point for anti-PD-1/PD-L1 

therapies
[31]

; however, controversy remains regarding 

the prognostic value of PD-L1 expression
[17]

. 

Therefore, there is an urgent need to improve strategies 

for cancer immunotherapy as well as development and 

validation of novel biomarker panels. 

Selection of apoptosis-resistant cells is another major 

hurdle, limiting immunotherapy success
[16]

. Since 

cellular apoptosis machinery can be activated by 

chemo- and immuno-therapies, tumor cell sensitivity to 

anticancer treatments can remarkably be influenced by 

the expression of anti-apoptotic factors
[32]

. Since 

different alternations in antiapoptotic proteins such as 

BCL-2, BMF
[32]

, and various pro-survival kinases
[33]

 

were detected in patients with metastatic breast cancer, 

the justification of systematic classification techniques 

may be an inevitable approach in patients’ selection, in 

order to find the subjects with better response to 

immunotherapy and combined treatments of protein 

inhibitors.  

HLA-I surface expression has a great impact on 

success in T-cell-mediated immunotherapies. Thus, 

even small changes in the expression of HLA-I may 

confront breast cancer immunotherapy with a huge 
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challenge
[16,34]

. HLA-I expression was lost in 70% of 

the lymph node metastases, 37% of in situ breast 

carcinomas and 43% of the primary tumors
[35]

. Further 

studies are required to determine those breast cancer 

patients obtained more benefit from immunotherapies. 

Variable levels of HLA-I expression was detected in 

triple-negative breast tumors
[36]

. Alternation in HLA-I 

expression is involved in immunosuppressive 

mechanisms and induces immune escape of tumor. 

Also, HLA-II presentation pathway activation leads to 

the infiltration of lymphocytes into tumor and 

improved prognosis
[37,38]

. For these reasons, before 

immunotherapy, specific considerations related to these 

receptors should be taken into account. It is also worth 

emphasizing that HLA-I expression may increase due 

to targeting mitogen-activated protein kinase or 

HER2
[39,40]

; hence, protein kinase inhibitors would be 

useful in the augmentation of T-cell-based 

immunotherapies. 

 
Rational for breast cancer immunotherapy 

Along with surgery as the main approach in the 

physical removal of the tumor, strategies such as 

radiation and chemotherapy can promote DNA damage 

or disrupt cell cycle, eventually leading to the death of 

cancer cells. No optimal chemotherapy regimen was 

identified for all subtypes of this heterogenous disease. 

Condensed chemotherapy appears to be more effective 

than conventional treatments; however, such 

chemotherapies require the growth factor usage, which 

substantially imposes additional costs to the patient. 

Additionally, the toxicity of chemotherapy impacts 

many organs. Vomiting, hair loss, chemotherapy-

induced nausea, myeloid cell suppression, and 

neuropathy are the most frequent side effects
[41]

. 

Hormone therapy, like chemotherapy and radiation 

therapy, is a common non-targeted treatment and often 

causes severe side effects
[42]

. Owing to the limitations 

of traditional therapies, researches have focused on 

developing targeted therapies, giving rise to sustainable 

responses. Targeted treatment represents a great hope 

in the fight against cancer. Immunotherapy has recently 

been considered as a powerful treatment that targets a 

specific protein. Targeted therapy imposes a minor 

impact on normal cells and subsequently,  

low adverse effects
[43]

. Immunotherapies provoke the 

body's immune system to diagnose and eliminate  

the malignant cells. Various strategies include  

(1) immunological checkpoint inhibition, (2)  

anti-tumor vaccines, (3) transmission of elective  

T-cell treatment, and (4) immunotherapy using  

mAbs (Fig. 1). 

 

 

Immunological checkpoint inhibition 
Breast tumors show a high level of PD-1, PD-L1 

expression, CTLA-4, and indoleamine-2,3 

dioxygenase, all of which can improve anti-tumor 

immunity as treatment targets
[44]

. CTLA-4 is an 

encouraging therapeutic way to boost anti-breast 

cancer immunity. Human mAb against CTLA-4, 

ipilimumab, was approved in 2011 for the metastatic 

melanoma treatment. There have currently been some 

clinical trials assessing the immunity and effectiveness 

of CTLA-4 block in the breast cancer. In phase 1 

clinical trial, the therapeutic effects of ipilimumab 

combined with nivolumab, an anti-PD-1 mAb and a 

histone deacetylase inhibitor, was investigated in 

HER2-negative breast cancer patients (The National 

Clinical Trial number (NCT) 02453620). In a separate 

study, ipilimumab in combination with nivolumab was 

assessed in the treatment of the early stages of breast 

cancer (NCT 02833233). The immunity of another 

anti-CTLA-4 mAb, tremelimumab, was evaluated as a 

single treatment or with anti-PD-L1 (durvalumab) in 

advanced breast cancer treatment (NCT02527434 and 

NCT01975831). Although CTLA-4 block is an 

attractive approach for treating the breast cancer, its 

immunity-related toxicity is still a matter of concern. 

Because the CTLA-4 limits the T-cells colony 

expansion and activation, its blocking would reduce 

the required threshold for T-cell activation; 

consequently, it would often be accompanied by 

autoimmune intense side effects and immunity-related 

ones, such as colitis, dermatitis, and hypophysitis 
[45]

.  

PD-1 is a cell surface receptor that binds to PD-L1 

(B7-H1) or PD-L2 (B7-DC) and inhibit T-cell function  

in  non-lymphoid and lymphoid organs
[46]

. The PD-1 

expression  is easily detectable in tumor-infiltrating 

lymphocytes and linked to poor prognosis
[47]

. PD-L1 

has been found to be overexpressed in breast cancer 

cells and accompanied by poor prognosis, namely, the 

advanced tumor grade and increased proliferation 

rate
[48,49]

. 

PD-1 and PD-L1 are currently being applied for 

therapeutic purposes. Pembrolizumab, an anti PD-1 

human mAb, was tested in advanced TNBC patients 

(NCT01848834)
[50]

. Expression of PD-L1 was detected 

in 60% of patients. The pembrolizumab effect was 

observed in 27 cases; the overall response was 18.5%, 

and one patient was seen with a full response. 

Atezolizumab is a human mAb that causes PD-L1 

inhibition. It was examined with paclitaxel in 32 

patients systematically treated for up to three years in 

the previous line
[51]

. Neutropenia was observed in  

40% of cases, but no fatalities were reported; anti- 

tumor efficacy was found  in  70%  of  TNBC  patients. 

 [
 D

O
I:

 1
0.

52
54

7/
ib

j.2
5.

3.
14

0 
] 

 [
 D

O
R

: 2
0.

10
01

.1
.1

02
88

52
.2

02
1.

25
.3

.5
.3

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ib

j.p
as

te
ur

.a
c.

ir
 o

n 
20

25
-1

0-
25

 ]
 

                             4 / 17

http://dx.doi.org/10.52547/ibj.25.3.140
https://dor.isc.ac/dor/20.1001.1.1028852.2021.25.3.5.3
https://ibj.pasteur.ac.ir/article-1-3201-en.html


Immunotherapy of Breast Cancer Simonian et al. 

 

 
144 Iran. Biomed. J. 25 (3): 140-156 

 

 
 

Fig. 1. Four different immunotherapy strategies in breast cancer. 

 

 

Avelumab is another completely humanized antibody 

that has been evaluated in a clinical trial of phase 2 in 

breast cancer patients
[52]

. Its ineffectiveness was 

observed in 40 out of 168 patients (23.8%). While 

these types of treatments have acceptable and 

promising results, it should not be neglected that in 

some cases, they can result in drastic side effects, e.g., 

death in several patients. Further studies are vital to 

assess the risk of this type of treatment. On the other 

hand, it seems that immunosuppressive mechanisms 

among various patients are different, which leads to 

exorbitant costs for each one. Moreover, this treatment 

could have adverse effects by systematic suppression 

of the immune system. 

 

Antitumor vaccines 
The aim of antitumor therapy vaccines is to attain an 

extremely specific antitumor cellular immune response. 

The effectiveness of antitumor vaccines is mainly rely 

on the stimulation of tumor-specific T lymphocytes to 

detect and eradicate  the proliferated cancer cells
[53]

. In 

addition, early T-cell responses could prevent tumor 

recurrence by inducing long-term immune memory
[54]

. 

Identifying mutated tumor antigens could assist the 

expansion of personal vaccination strategy. Several 

vaccine approaches, comprising of monovalent, 

polyvalent, and cellular vaccines, have been assessed. 

Monovalent vaccines were designed utilizing single 

TAA (such as HER2, sialyl-Tn, carcinoembryonic 

antigen, mucin 1, Wilms tumor gene, and telomerase 

reverse transcriptase) to stimulate an inherent 

antitumor response to aid cancer treatment
[55]

. 

Although appeared to be efficacious in targeting 

immune responses toward the specific antigen, 

monovalent vaccines may simplify the appearance of 

resistant tumor cells with decreased expression of 

tumor antigen
[56]

. To alleviate the negative outcomes of 

antigen loss, polyvalent vaccines have been developed. 

These vaccines use multiple TAAs to enable more 

drastic and varied antitumor responses. One example is 

PANVAC (pancreatic vaccine), a recombinant 

poxvirus-vector therapeutic vaccine that stimulates 

immune responses against the tumor antigens 

(carcinoembryonic antigen and MUC1). In phase 2 

clinical study, more encouraging effects were detected 

in the vaccination group compared with the 

chemotherapy-alone group (69% vs. 53%)
[57]

. 

However, polyvalent vaccines could carry multiple 

TAAs simultaneously. The third class of vaccines aims 

to improve the delivery of TAAs through the whole 

cell manufacture or cellular contents. GVAX, a 

granulocyte-macrophage colony-stimulating factor 

gene-transfected tumor vaccine
[58]

. A phase 2 study 

was performed with GVAX in combination with 

cyclophosphamide and trastuzumab in HER2-negative 

metastatic breast cancer (NCT00971737). Anti-tumor 

vaccines are recognized as an effective strategy for 

treating breast cancer and indicate spectacular features 

with acceptable toxicity profiles. However, there are 

limitations for these vaccines, namely, the imperfect 
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antitumor immune response which is inadequate for 

tumor elimination
[59,60]

. The downsides of major 

histocompatibility complex in peptide vaccines are that 

each vaccine is used in a group of patients with 

expression of specific HLA molecules
[61]

. 

Systemically, injected peptides bind to non-

professional APCs, which could lead to tolerance 

because of inefficient stimulation. In addition, the 

effectiveness of the vaccine is greatly affected by the 

very short half-life of peptides in the body
[62]

.  

Overall, it is necessary to identify a set of antigens 

associated with tumor in each individual to optimize 

the production of stronger and more specific anticancer 

cells; for instance, vaccines. Targeting multiple 

antigens in these strategies is crucial not only to 

prevent the loss of the antigen due to selective pressure 

but also to enhance the chances of inducing immune 

memory that prevents metastasis and recurrence of the 

tumor. Eventually, although antitumor vaccines would 

bring immunity for breast cancer patients, their 

effectiveness is less than expected. 

 

Adoptive T-cell transfer therapy 

Transmission of selected T cells contains the 

extraction of patient T cells and also the genetic or 

chemical alteration to increase their activity, with the 

aim of creating antitumor immunity
[63]

. It has been 

observed that in a single tumor sample, there is a 

different population of lymphocytes with various 

antigenic characteristics and phenotypic 

populations
[64]

. Extraction and manipulations to 

stimulate tumor-infiltrated lymphocytes did not 

indicate positive clinical effects in immunotherapy of 

breast cancer
[65]

. Improvements in molecular biology 

and genetic engineering have resulted in the 

development of two new types of ACTs: (1) TCR gene 

transfer and (2) CAR gene transfer. 

 

TCR 

  Gene transfer technology helps to develop new 

strategies in ACT category. Effector lymphocytes are 

made by the fusion of the patient's T cells with genes 

that encodes antigen receptors. These cells have the 

capability of eliminating tumor in vivo
[66]

. The T-cells 

redirection is achieved by expressing an antigen-

specific TCR on cell surface, providing a recognition 

signal for T cells, followed by a co-stimulatory  

signal to regulate the T cells activation against tumors. 

TCRs may have better function to transform  

cancer therapeutics compared to tumor-infiltrating 

lymphocyte-strategies since they have enhanced tumor 

specificity and the possibility of clinically relevant 

doses of the production of these therapeutic cells. 

These approaches could generate more efficient T cells 

for targeting tumors without requirement for a new T-

cell activation overcoming the central and peripheral 

tolerance fundamental limitations
[67]

. A TCR may 

target either intracellular (it could add to the pool of 

potential targets) or extracellular antigen in the context 

of significant major histocompatibility complex 

presentation
[68]

. A cancer testis antigen, NY-ESO-1, is 

expressed in 10% of TNBCs and has been revealed to 

be effectively targeted with TCR transfer immuno-

therapy
[69]

. Targeting PIK3CA, a common driver 

oncogene using genetically redirected T cells, 

eradicated target cancer cells
[70]

.  

 

CAR 
CAR T cells consists of an antibody-binding domain 

and a cell signaling domain. Elements that enhance T-

cell persistence and activity are also included in CAR 

constructs
[71]

. CARs specific for a broad range of 

antigens have been developed and effective treatment 

of breast cancer with these reported in several in vivo 

studies. Different CAR T-cells targeting, mucin 1, 

folate receptors and HER2 -MUC1 are available 
[72-74]

 .  

 Adoptive cell therapy is a personal-centered therapy 

and the choice of different approaches and is strongly 

influenced by each patient’s condition. Such treatments 

require complex preparations and procedures for each 

patient, long-term cell culture, experts, and patient 

preparation
[75]

. Moreover, immune cells from cancer 

patients show different phenotypes when compared  

to healthy donors. One of the challenges in  

using patient’s leukocytes is that the T cells and 

dendritic cells obtained from cancer patients cannot 

function properly in many cases. Additionally, whether 

they can create a desired anti-tumor immunity or not is 

of concern
[76]

. 

 

Adoptive immunotherapy with mAbs and ADCs 

mAbs have been developed over the past two 

decades. Trastuzumab was the first mAb targeting the 

extracellular HER2 cell domain, leading to the 

cessation of mitogen-activated protein kinase and 

PI3K/AKT intracellular signaling in the in vivo and in 

vitro environment. This antibody was finally received 

approval from FDA in 1998
[77,78]

. Unfortunately, only 

one-third of patients with HER2 amplification respond 

to this treatment
[79]

. Genetic changes, such as 

decreased expression or mutations in HER2
[80]

, and the 

PIK3CA downstream mutation or PTEN loss of 

function, could affect the response to the anti-HER2 

agent
[81,82]

. Bevacizumab was another mAb that could 

regulate angiogenesis and tumor survival against 

VEGF
[83]

. However, angiogenesis inhibitors have not 

been successful in treating breast cancer. Failure to 

target angiogenesis is one of the most significant 
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experiments in late 2000 clearly showing that 

angiogenesis is not a central mechanism for the 

disseminated tumor cells or micrometastatic disease. 

Pertuzumab is a type of human monoclonal IgG 

antibody and has therapeutic confirmation in 

combination with trastuzumab for HER2-positive 

metastatic breast cancer patients
[84]

. Meanwhile, mAbs 

activate the immune response to kill cancer cells. For 

instance, opsonized epithelial tumor cells by 

trastuzumab could be killed through antibody-

dependent cytotoxicity via natural killer cell
[85,86]

. 

However, de novo mutations occur in 65% of patients, 

and 70% of the patients who initially respond to 

treatment eventually become resistant
[87]

. 

The tyrosine kinase receptor family EGFR plays an 

important role in tumor formation. Evidence has shown 

that prescribing two inhibitors against EGFR or ErbB2 

family works in perfect harmony and significantly 

increases antitumor activity. For instance, combination 

therapy with trastuzumab and lapatinib, an EGFR/ 

HER2 dual inhibitor, results in perfect cessation of 

BT474 breast cancer cells. These studies have also 

been extended to HER2-positive MCF7 breast cancer 

model
[88]

. 

PI3K/AKT/mTOR is a key pathway in breast cancer. 

Everolimus and Palbociclib are proven anti-mTOR and 

anti-CDK4/6, respectively, which can be used to treat 

both ER-positive and HER2-negative breast cancer
[89]

. 

However, everolimus treatment can cause negative 

feedback to IRS-1/IRS-2, thus activating mTORC2 and 

AKT downstream signals
[90]

. Furthermore, the toxicity 

of the PI3K pathway inhibitor and the reduction of 

total survival are needed to be considered
[91]

. 

Regrettably, no targeted treatment other than standard 

chemotherapy for triple-negative breast cancer is 

recommended. This type of breast cancer is extremely 

invasive and requires continuous angiogenesis at all 

stages of tumor growth and expansion. Anti-vascular 

endothelial growth factor mAbs, bevacizumab, were 

confirmed by FDA; however, it was excluded due to its 

limited effect on the general survival of patients
[92,93]

. 

None of the anti-VEGF antibodies, ramucirumab, 

tyrosine kinase inhibitors, sunitinib, and sorafenib are 

effective in improving the survival of TNBC patient in 

phase 3 of clinical trial
[94,95]

. In addition, disappointing 

results from EGFR and cetuximab antibodies have 

been reported in clinical trials for TNBC
[96,97]

. 

In the majority of cases, a specific mutation or a 

signaling pathway is targeted. Unfortunately these 

signal transmission pathway inhibitors are moderately 

efficient. Evidence has suggested a very low survival 

rate in several weeks or months, if metastatic condition 

is present, which is due to the significant limitations of 

current targeted therapies
[98]

. Reasons for internal 

resistance to targeted drugs include temporary 

antitumor activity, lack of attention to heterogeneity 

among patients, and heterogeneity in the tumor itself, 

as well as the lack of comprehensive insights into how 

cancer genomes and molecular networks regulate gene 

expression
[98,99]

. Moreover, large molecules such as 

mAbs have a poor distribution due to their high 

molecular weight, which this could be an explanation 

for the difficult treatment of large solid cancerous 

tumors by mAbs
[100]

. To overcome these challenges, 

targeted therapies have emerged in the form of 

antibody-drug conjugates. Cytotoxic drugs are 

supposed to bind to antibodies via chemical linkers. 

The carrier antibody could detect cancerous antigen 

cells and deliver the conjugated drug to those 

cells
[101,102]

. ADCs are assumed perfect delivery 

systems for cytotoxic antitumor drugs
[103]

. Key factors 

for ADC development include the selection of the 

target antigen and the features of linker between the 

antibody complex and the drug. Other important 

factors are comprised of drug to antibody ratio and the 

effects of drug conjugation on antibody function. The 

first FDA approved ADC was in 2001 for acute 

myeloid leukemia patients. Gemtuzumab ozogamicin 

with the brand name of Mylotarg® was removed from 

the market in June 2010. In 2017, the product was re-

introduced to the US market
[104]

. The second and third 

ADCs offered to the commercial market were 

Brentuximab vedotin with the brand name of 

Adcetris® and Trastuzumab emtansine with the brand 

name of Kadcyla. Brentuximab vedotin was approved 

for patients with Hodgkin's lymphoma on August 19, 

2011
[105]

, while Trastuzumab emtansine was affirmed 

for metastatic breast cancer patients in February 

2013
[106]

. The newest ADC, Inotuzumab ozogamicin, 

with the trade name of Besponsa®, entered the market 

by European Commission for the treatment of adults 

with lung, acute lymphoblastic leukemia. Inotuzumab 

ozogamicin was later confirmed on August 17, 2017, 

for treating adults with lung, acute lymphoblastic 

leukemia or resistance to acute lymphoblastic 

leukemia
[107]

. As breast cancer will remain a global 

public health problem for women in the future
[2]

, ADC 

could expand new methods and techniques in efficient 

treatments of breast cancer. Among 15 ADCs currently 

being evaluated for breast cancer, seven cases target 

the HER2. The HER2 recipient is one of the four 

receptors from the EGFR family and a protein receptor 

consisting of one extracellular domain and one 

intracellular domain. ADCs can be exceptionally 

effective in breast cancer with HER2 expression
[108]

. 

HER2 expression in tumor differs from normal tissue 

and increases in 20-25% breast cancer cases
[109]

. To 

date, Kadcyla® is the only ADC approved for HER2-
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positive metastatic breast cancer that has previously 

been treated with trastuzumab and taxane. T-DMI is 

composed of trastuzumab (humanized IgG1), 

conjugated with DM1, via an SMCC linker. T-DM1 

has an average drug-antibody ratio of 3.5
[110,111]

. In 

these studies, T-DMI, an active drug with high 

tolerability, has shown a strong antigen activity in 

laboratory conditions, indicating an acceptable 

pharmacokinetic profile in xenograft samples of human 

tumor
[111]

. T-DMI active catabolite (Lys-SMCC-DM1) 

demonstrates strong activity after antigen-dependent 

entry and antibody lysosomal degradation. However, 

Lys-SMCC-DM1 has poor membrane permeability, 

explaining why it has the least bystander properties. In 

addition, 50% of metastatic breast cancer patients do 

not reply to this treatment
[112]

. Similarly, there are 

significant demands for the presentation of newer 

conjugates for HER2-positive tumors and other types 

of breast cancer. 

There are six HER2-based ADCs in clinical trials 

aimed to improve the activity and maintain or enhance 

the T-DM1 immunity. Moreover, the utilization of the 

following cytotoxic drugs with different actions has 

been assessed: DS-8201a for the transmission of 

exatecan, a  topoisomerase inhibitor
[113-116]

, and 

SYD985
[117,118]

, a DNA-alkylating drug
[119,120]

, as well 

as ADCT-502 for the transmission of 

pyrrolobenzodiazepine that enters DNA minor 

grooves
[121]

. 

 

ARX788 
ARX788 is an ADC with site specifically conjugated 

drug, an inseparable linker, and a combination of a 

linker and a cytotoxic drug that has amberstatin. 

Amberstatin (AS269) contains monomethyl auristatin 

F linked to a short polyethylene glycol spacer
[122]

. 

Preclinical ARX788 studies have shown activity in 

different xenograft models, such as ovarian and 

trastuzumab-resistant breast cancer. 

 

MEDI-4276 

Targeting HER2 can be carried out by both targeting 

different epitopes in HER2, as well as utilizing other 

cytotoxic drugs
[123,124]

. MEDI-4276 is completely a 

human IgG connected to a different epitope of HER2. 

This ADC is in the phase 1 of clinical trial in breast 

and gastric cancer patients. 

 

XMT-1522 

XMT-1522 uses a polystyrene-based polymer 

(Fleximer®) that significantly increases the loading of 

the cytotoxic drug on the antibody (DAR 12-15)
[125]

. 

The used mAb, XMT-1519, is attached to HER2 

epitope different from those targeted by trastuzumab 

The drug used in XMT-1519 is a new auristatin having 

a unique medicinal property.  

 

DS8201-a 
DS8201 is an anti-HER2 human mAb conjugated 

with topoisomerase I inhibitor, DXd. This ADC shows 

a cell-related HER2 toxicity effect in laboratory 

conditions in pancreatic, breast, and gastric cancer 

cells. Human model studies have also indicated HER2-

specific activity in tumors with heterogeneous 

expression of HER2
[114,115]

. This ADC has entered in 

phase 1 of clinical trial. SYD985 contains conjugated 

trastuzumab connected to duocarmycin through 

maleimide coupling to inter-chain disulfides. The main 

difference in this ADC, in comparison with TDM-I, is 

the use of a degradable linker and DNA destructive 

agent. Duocarmycins are strong DNA alkylating agents 

that bind to the DNA groove and cause adenine N3 

alkylation
[117]

. Peptide degradable linkers have good 

systemic stability. Proteolytic release occurs via 

cathepsin B and L, creating a self-decomposing short-

lived intermediate. This ADC has entered phase 1 of 

clinical trial in solid cancers, which then enters the 

expansion phase in HER2-positive tumors.  

ADCT-502 is an ADC with engineered trastuzumab 

attached to highly cytotoxic PBD- 

based linker-drug tesirine. ADCT-502 is currently 

being evaluated in patients with solid tumors 

expressing HER2 in phase 1 of clinical trial. Other 

ADCs, with different targets and in the final stages of 

clinical trials are as follows: 

 

Glembatumumab vedotin 
GPNMB is a transmembrane glycoprotein that its 

role in cancer is complicated; It acts like a tumor 

suppressor or has a function in the cancer progression.  

In cancer, GPNMB overexpression is found in 

different types of tumors, including melanoma, breast, 

lung, and osteosarcoma, when compared to normal 

tissues
[126-129]

. In breast cancer, GPNMB gene 

expression is associated with reduced overall survival. 

GPNMB overexpression is observed in both TNBC 

and basal cancers, which is associated with poor 

prognosis
[130]

.  

Glembatumumab vedotin (CDX-011) is an anti-

GPNMB ADC containing an IgG2 connected to a 

microtubule inhibitor, MMAE
[131]

, through a vc 

linker
[132,133]

. In a study of phase 2 clinical trials in 

patients with advanced cancer or local metastasis of 

breast cancer, Glembatumumab vedotin had more 

acceptable results when comparing to chemotherapy. 

Additionally, it had fewer side effects in patients with 

less stimulation of bleeding, itching, neuropathy, and 

alopecia
[134]

.  
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IMMU-132 
The TROP-2 is a membrane glycoprotein 

overexpressed in a variety of tumors, including breast 

cancers. Excessive expression of TROP-2 is observed 

in invasive disease, linked with drug resistance and 

poor prognosis
[135-137]

. IMMU-132 (Sacituzumab 

govitecan) is an anti-TROP-2 ADC consisting of one 

IgG1 anti-TROP-2 mAb (hRS7) and one 

topoisomerase inhibitor. Unlike other ADCs, SN-38, is 

a topoisomerase I inhibitor having a moderate effect 

(nM) when comparing to other drugs currently used in 

ADC (<200 pM).  Second, its releasing mechanism is 

dependent on acid, which exerts through a benzyl 

carbonate bond to SN-38’s lactone ring. This linker 

contains a short sequence of PEG and a lysine residual, 

making it relatively polar in nature. It would likely 

explain the high level of 7.6 DAR in this ADC, which 

is twice the current ADCs. In PH near 5.3 of lysozyme 

(37 centigrade), 50% of the drug is released in 13 

hours. IMMU- 132 preclinical models have shown 

specific antigen activity against TROP- 2-expressing 

cells in different in vitro and in vivo
[136,138]

.  

 

SAR566658 

CA6 is a tumor-related antigen and one 

sialoglycotope of MUC1. It is thought that it results 

from inappropriate MUC1 glycolysis
[139]

. The CA6 

cancer-related glycotype is observed in most normal 

tissues at low levels, whereas its overexpression has 

been found in many solid tumors, including 30% of 

breast cancer cases
[139,140]

. SAR566658 contains an 

anti-CA6 (huDS6) antibody that binds to a non-polar 

S-methyl-DM4 drug through a stable disulfide 

bond
[141]

. Two methyl groups close to disulfide in these 

linkers are to prevent the breakdown of the linker by 

free thiols in the bloodstream, while allowing the 

breakdown in the existence of a much higher level of 

glutathione and cysteine inside the cytosol or 

nucleus
[142]

. This ADC has indicated an acceptable 

immune and antitumor activity during phase 1 of 

clinical trial in acceleration dose of patient’s different 

solid tumors with CA6 (more than 30% of tumor cells) 

expression
[143]

. One phase 2 clinical trial is being 

conducted in TNBC patients with CA6 expression 

(NCT 02984683). Numerous ADCs are involved in 

phase 1 trials targeting breast tumor-related antigens. 

 

LIV-1 
LIV-1 (SLC39A6) is a transmembrane protein that 

transports zinc into cells
[144]

. LIV-1 regulates estrogen 

in breast cancer, which its expression has been linked 

to tumor development and metastasis
[145,146]

.  LIV-1 

expression is associated with E-cadherin decrease and 

may play a role in epithelial-mesenchymal 

transmission and increased metastasis
[147,148]

. The anti-

mLIV2 mouse mAb precisely binds to an extracellular 

N-terminus epitope of LIV-1. Complementarity-

determining region grafting was used to produce anti-

LIV-1 human IgG1, named hLIV22. ADC guided to 

the (SGN-LIV1A) LIV1 side is produced by hLIV22 

mAb connection to a MMAE (an analog auristatin) via 

endogenous cysteine. SGN-LIV1A leads to the 

elimination of ER- and LIV1-positive MCF7 breast 

cancer cells, as well as BR0555, which is a xenograft 

tumor of the breast cell
[149]

. SGN-LIV1A alone and in 

combination with trastuzumab are currently 

undergoing phase 1 clinical trial in patients with 

metastatic breast cancer expressing LIV1. 

 

PTK7 

PTK7 is identified as the colon carcinoma kinase 4, a 

highly protected PTK that plays an important role in 

Wnt signaling. In breast cancer, PTK7 is more 

expressed in ER-negative tumors than in ER-positive 

tumors. Moreover, PTK7 suppression through siRNA 

leads to severe inhibition of human ER-negative breast 

cancer growth
[150]

. An anti-PTK ADC with average 

DAR of 4, alongside a conjugated h6M24, human 

(IgG1) mAab, is connected to Aur0101, an auristatin 

analog, using a decomposable linker (vc-PABC). This 

ADC is called h6 M24-vc-0101 or PF-06647020. 

Aur0101 is specifically designed to maintain cellular 

potential and oxidative metabolism faster than 

MMAE
[151]

. Increased clearance of this cytotoxic drug 

may reduce systemic toxicity and increase ADC 

therapeutic indicators. PF-06647020 produces antigen-

dependent cytotoxicity in PTK7-expressive cells, 

leading to the cessation of cell mitosis and destruction 

of the microtubule. Studies in TNBC models of 

NOD/SCID rats have shown a high anti-tumor activity 

of this ADC. Preclinical anti-tumor activity of 

acceptable immunity and PF-06647020 

pharmacokinetic profiles lead to the entrance of ADC 

to the first phase of clinical trial studies in patients with 

advanced solid tumors and different expressions of 

PTK7. Later, it entered to cohort studies in TNBC, 

non-small-cell lung cancer, and ovarian cancer 

patients
[152]

. 

 

LAMP-1  
LAMP-1 (CD107a) and LAMP-2 are transmembrane 

type I proteins, accounting for about 50% of all 

lysosomal membrane proteins
[153]

. In normal cells, 

LAMP-1 is normally expressed in lysosomes, though it 

is transferred to the surface of tumor cells, where its 

expression level is associated with invasion and 

metastasis of different types of tumors
[154]

. SAR428926 

is a LAMP1 ADC in which Ab-1 is connected to the 
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LAMP1 luminal domain. This antibody does not detect 

LAMP1 in normal tissue cells. SAR428926 connects to 

DM4 using a decomposable link, N-succinimidyl-4-(2-

pyridyldithio) butanoate. SAR428926 assessment of 

subcutaneous patient-derived xenograft mouse models 

indicate increased antigen-dependent anti-tumor 

activity, including shrinkage of breast, prostate, 

colorectal, lung, and ovarian tumors. The reported 

activity is related to the LAMP-1 level of expression 

and the tumor model sensitivity to the DM4
[155,156]

. P-

cadherin has a major role in calcium-dependent cell-

cell adhesion. It is expressed during growth and also in 

normal myoepithelial/basal cells of adults and 

epithelial tumors. In a normal breast, P-cadherin is 

involved in maintaining the breast epithelium structural 

integrity in the adult tissues of basal layer and  

hair follicles
[157-159]

. In breast cancer, P-cadherin 

overexpression is related to the invasive power of 

tumors and is a hallmark of poor prognosis
[129]

. 

PCA062 is an anti-P-cadherin ADC in which an IgG1 

is connected to a maytansinoid DMI. PCA 062 is 

rapidly internalized inside the cell and then lysosome, 

leading to antigen-dependent cell toxicity. PCA062 

ADC has anti-tumor activity in breast and bladder 

cancer xenograft models
[160]

. At present, PCA062 is 

evaluated in phase 1 clinical trial in TNBC patients 

with P-cadherin expression. 

 

EphA4 

Ephrin receptors, from RTK family, have an 

increased expression in tumors and are related to the 

development of different types of tumors, including 

breast, pancreatic and lung cancer
[161,162]

. Expression 

profiles of PDX models show an increase in the EphA4 

expression of TNBC tumors, as compared with 

adjacent natural breast tissue and other breast cancer 

subtypes
[163]

. PF-06647263 is an anti-EphA4 ADC in 

which calicheamicin, DNA destructive agent, binds to 

an IgG1, anti-EphA4 mAb. It has been introduced to 

the market as Mylotarg® (Gemtuzumab 

ozogamicin)
[164]

.  

 

Conclusions and future directions 
Immunotherapy has shown great potential for breast 

cancer treatment, demonstrating the possibility of 

utilizing the immune system for clinical benefit in this 

malignancy. The developments in targeted 

immunotherapy have led to clinical advances in the 

treatment of breast tumors. In near-term future, the 

advances in combination immunotherapies can alter 

breast cancers from immunologically cold tumors to 

immune-activated lesions ready for response to 

immunotherapy. Several strategies that utilize 

molecular targeted agents to boost breast cancer-

specific immunity are under rapid development. In 

addition, combinatorial approaches that act on the 

compensatory pathways in resistant lesions may 

markedly raise hope on the effectiveness and duration 

of response to immune-based breast cancer prevention. 
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