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ABSTRACT

Breast cancer, as a heterogeneous disease, includes a wide range of pathological and clinical behaviors. Current
treatment protocols, including radiotherapy, chemotherapy, and hormone replacement therapy, are mainly
associated with poor response and high rate of recurrence. Therefore, more efforts are needed to develop
alternative therapies for this type of cancer. Immunotherapy, as a novel strategy in cancer treatment, has a
potential in treating breast cancer patients. Although breast cancer has long been considered problematic to
treat with immunotherapy, as it is immunologically "cold," numerous newer preclinical and clinical reports now
recommend that immunotherapy has the capability to treat breast cancer patients. In this review, we highlight

the different immunotherapy strategies in breast cancer treatment. DOI: 10.52547/ibj.25.3.140
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INTRODUCTION

hroughout the world, breast cancer is considered

as one of the most prevalent cancer among

women and the second most cancer
worldwide!™. Breast cancer is also more frequent in
developed countries™, and annually, there is a 2% rise
in its prevalence worldwide®™. Such a rapid increase in
the number of affected people has been reported from
countries with the low incidence of breast cancer®. In
the Middle East, this cancer is ranked in the first place.
Similarly, in Iran, the incidence of breast cancer is
estimated to be 23.1 per 100,000 women®, and the
available data indicates that the disease prevalence has
elevated in the country so that since 1999, it has stood
in the first place among cancer cases in women
nationwide®. In recent years, breast cancer is
considered as a group of diseases, containing at least
21 distinct histological subtypes and four main
molecular subtypes, which are constantly correlated

List of Abbreviations:

with distinguishing clinical presentations and/or
outcomes”®. The most common type of invasive
breast cancer (more than 75%) is now histologically
specified as “no special type,” and called “ductal”
carcinomas. Invasive lobular carcinoma is the most
prevalent special histologic subtg/pe accounts for about
15% of invasive breast cancers®™. Table 1 summarizes
the new classification of breast tumors reported by
World Health Organization™. Breast cancer molecular
subtypes are categorized through high-throughput
microarray-based gene expression profiling. At the
molecular level, there are four different molecular
subtypes of breast cancer: luminal, normal breast-like,
HER2, and basal-like. Luminal A (HR+/HER2-) is the
most prevalent type of breast cancer that grows slower
and tends to be less aggressive when compared with
other subtypes. Luminal B (HR+/HER2+) is associated
with poorer prognosis as it demonstrates a higher grade
than luminal A (the higher proportion of breast
cancer patients dropped to grade 111 and IV category in

ADC, antibody-drug conjugate; CAR, chimeric antigen receptor; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; DCIS, ductal
carcinoma in situ; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; EphA4, Ephrin A4; GPNMB, glycoprotein
non-metastatic b; HER2, human epidermal growth factor receptor 2; HLA, human leukocyte antigen; HR, hormone receptor; MMAE,
monomethyl auristatin E; PTK7, protein tyrosine kinase 7; TAA, tumor-associated antigens; TCR, T-cell receptor; TNBC, triple-
negative breast cancers; TROP-2, trophoblast cell surface antigen; VEGF, endothelial growth factor
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Table 1. Histological typing of breast carcinomas*®!

Non-invasive lobular neoplasia

Lobular carcinoma in situ (classic, florid, and pleomorphic)

DCIS

DCIS of low nuclear grade

DCIS of intermediate nuclear grade

DCIS of high nuclear grade

Invasive breast carcinoma

Invasive breast carcinoma of no special type (including medullary pattern, invasive carcinoma with neuroendocrine differentiation,
carcinoma with osteoclast-like stromal giant cells, pleomorphic pattern, choriocarcinomatous pattern, melanocytic pattern, oncocytic
pattern, lipid-rich pattern, glycogen-rich clear cell pattern, and sebaceous pattern)

Microinvasive carcinoma

Invasive lobular carcinoma

Tubular carcinoma

Cribriform carcinoma

Mucinous carcinoma

Mucinous cystadenocarcinoma

Invasive micropapillary carcinoma

Carcinoma with apocrine differentiation

Metaplastic carcinoma (low-grade adenosquamous carcinoma, [high-grade adenosquamous carcinoma], fibromatosis-like metaplastic
carcinoma, spindle cell carcinoma, squamous cell carcinoma, metaplastic carcinoma with heterologous mesenchymal [e.g. chondroid,
osseous, rhabdomyoid, neuroglial) differentiation, and mixed metaplastic carcinomas)

Acinic cell carcinoma

Adenoid cystic carcinoma

Secretory carcinoma

Mucoepidermoid carcinoma

Polymorphous adenocarcinoma

Tall cell carcinoma with reversed polarity

Neuroendocrine neoplasms

Neuroendocrine tumor (grades 1 and 2)

Neuroendocrine carcinoma

Papillary neoplasms

Papillary ductal carcinoma in situ

Encapsulated papillary carcinoma

Solid papillary carcinoma (in situ and invasive)

Invasive papillary carcinoma

Epithelial-myoepithelial neoplasms

Malignant adenomyoepithelioma

Epithelial-myoepithelial carcinoma

Tumors of the male breast

In situ carcinoma

Invasive carcinoma
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luminal B)"*2. Basal-like (HR-/HER2-) cancers are
known as triple negative since they are ER-, PR- and
HER2-. The incidence rate of TNBC is very high in
black women and those with a BRCA1 gene mutation.
The worst prognosis can be found in this group of
cancers™. In the last type of breast cancer, HER2-
enriched (HR-/HER2+) patients have the chance of
targeted therapies. This novel immunotherapeutic
strategy brlngs favorable outcomes for these
patients'™*

Different mechanisms of immune evasion in breast
tumors

One of the major features of cancerous cell is its
ability to escape and hide from adaptive immune
responses™®. Diverse mechanisms such as defective
activation of tumor-directed T-cells, imperfect T-cell
penetration into the tumor milieu, or emergence of
resistance to immune cells action can participate in
tumor evasion process™. Genomic instability, an
evolving hallmark of breast cancer, resulted in the
production of tumor neoantigens. Although these
neoantigens can easily be distinguished by immune
system and eradicated through T-cell function and
immunity against tumor™”*® cells can demonstrate
rather different immunogenic behawors conditional to
different subtypes of breast cancert™®. In the particular
profiling study, suspicious caIC|f|cat|ons are related to
hampered |mmune system activity as well as ERBB2
overexpression?”). Thus, breast calcifications could be
beneficial to the management of patients with breast
cancer for |mmunotherapy Hlstorlcally these tumors
are immunologically silent™™” or “cold” , which means
the attendance of low neoantigen burden and negligible
effector tumor-infiltrating lymphocytes. Due to an
obstacle to T-cell-based immunotherapies when
confronting with non-inflamed tumors, several studies
have attempted to discover new approaches to expand
immune cell infiltration to tumor microenvironment
and subsequent improvement of patient’s prognosis.
Besides, direct tumor cell damage through the local
tumor hyperthermia, serves as another valuable
|mmunotherapy strategy for cancer, which has shown
promising results in breast cancer patients?%,
Hyperthermia augments tumor cell sensitivity to
antitumor immunological responses by boosting tumor
surface  HLA-I polypeptide-related sequence A
expression. This specific sequence sensitizes tumor cell
to natural killer cells and CD8" cell-mediated lysis
through the elevated levels of heat shock proteins and
increasing exosomes release from tumor cells,
respectively®™. Recognition of tumor cells is another
key step toward a successful immune response. In this
context, tumor immune escape can take place in high
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levels of estrogen. Excessive estrogen may attenuate
IFN-y signaling and HLA-II expressmn Wlth apparent
negative effect in all immune cells®!. Moreover,
estrogens enhance tumor cell survival and proliferation
gene expression, along with growth factors (i.e. VEGF
and EGF®)). Since the presence of estrogen has
beneficial effects on tumor development, antiestrogen
therapies maybe a logical approach to improve the
response to immunotherapeutic agents. On the other
hand, estrogen deprivation initiates transcriptional
events in favor of the tumor evasion and metastasis in
patients receiving adjuvant hormonal therapy joints
with HER2-targeted agents®®!. Therefore, blocking the
PD-1/PD-L1 pathway in comblnatlon with hormone
therapies should be applied with caution. Considering
the reasons mentioned above, targeting growth factors
by conventional mAbs has positive |mmunotherapy
consequences by refining APCs activity!®’

Resistance to mAb-based |mmunotherap|es largely
depends on possible pathways such as the actlvatlon of
immuno-suppressive checkpoint pathways!?*)
Although the blockade of the PD-1/PD-L1 pathway by
FDA has been approved, atezolizumab appears to be
among encouraging methods for immunotherapy.
Indeed, it could achieve only 53% response rate for
metastatic breast cancer versus 33% for the placebo
group®™.  Similar to the PD-L1 pathway, PD-1
inhibitors have demonstrated the modest but promising
results when administrated in breast cancer
patients”*. In this regard, PD-L1 status is
considered the central point for anti-PD-1/PD-L1
therapies®; however, controversy remains regardln?
the prognostic value of PD-L1 expression
Therefore, there is an urgent need to improve strategies
for cancer immunotherapy as well as development and
validation of novel biomarker panels.

Selection of apoptosis-resistant cells is another major
hurdle, limiting immunotherapy success™. Since
cellular apoptosis machinery can be activated by
chemo- and immuno-therapies, tumor cell sensitivity to
anticancer treatments can remarkably be influenced by
the expression of anti-apoptotic factors®. Since
different alternatlons in antlapoptotlc proteins such as
BCL-2, BMFF, and various pro-survival kinases®™!
were detected in patients with metastatic breast cancer,
the justification of systematic classification techniques
may be an inevitable approach in patients’ selection, in
order to find the subjects with better response to
immunotherapy and combined treatments of protein
inhibitors.

HLA-I surface expression has a great impact on
success in T-cell-mediated immunotherapies. Thus,
even small changes in the expression of HLA-I may
confront breast cancer immunotherapy with a huge
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challenge™3¥, HLA-I expression was lost in 70% of
the lymph node metastases, 37% of in situ breast
carcinomas and 43% of the primary tumors®®®. Further
studies are required to determine those breast cancer
patients obtained more benefit from immunotherapies.
Variable levels of HLA-I expression was detected in
triple-negative breast tumors®®. Alternation in HLA-I
expression is involved in immunosuppressive
mechanisms and induces immune escape of tumor.
Also, HLA-II presentation pathway activation leads to
the infiltration of lymphocytes into tumor and
. . [37,38]

improved prognosis . For these reasons, before
immunotherapy, specific considerations related to these
receptors should be taken into account. It is also worth
emphasizing that HLA-I expression may increase due
to targeting mitogen-activated protein kinase or
HER2*“%: hence, protein kinase inhibitors would be
useful in the augmentation of T-cell-based
immunotherapies.

Rational for breast cancer immunotherapy

Along with surgery as the main approach in the
physical removal of the tumor, strategies such as
radiation and chemotherapy can promote DNA damage
or disrupt cell cycle, eventually leading to the death of
cancer cells. No optimal chemotherapy regimen was
identified for all subtypes of this heterogenous disease.
Condensed chemotherapy appears to be more effective
than  conventional treatments; however, such
chemotherapies require the growth factor usage, which
substantially imposes additional costs to the patient.
Additionally, the toxicity of chemotherapy impacts
many organs. Vomiting, hair loss, chemotherapy-
induced nausea, myeloid cell suppression, and
neuropathy are the most frequent side effects!!.
Hormone therapy, like chemotherapy and radiation
therapy, is a common non-targeted treatment and often
causes severe side effects*?. Owing to the limitations
of traditional therapies, researches have focused on
developing targeted therapies, giving rise to sustainable
responses. Targeted treatment represents a great hope
in the fight against cancer. Immunotherapy has recently
been considered as a powerful treatment that targets a
specific protein. Targeted therapy imposes a minor
impact on normal cells and subsequently,
low adverse effectsi®’. Immunotherapies provoke the
body's immune system to diagnose and eliminate
the malignant cells. Various strategies include
(1) immunological checkpoint inhibition, (2)
anti-tumor vaccines, (3) transmission of elective
T-cell treatment, and (4) immunotherapy using
mAbs (Fig. 1).
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Immunological checkpoint inhibition

Breast tumors show a high level of PD-1, PD-L1
expression, CTLA-4, and indoleamine-2,3
dioxygenase, all of which can improve anti-tumor
immunity as treatment targets!. CTLA-4 is an
encouraging therapeutic way to boost anti-breast
cancer immunity. Human mAb against CTLA-4,
ipilimumab, was approved in 2011 for the metastatic
melanoma treatment. There have currently been some
clinical trials assessing the immunity and effectiveness
of CTLA-4 block in the breast cancer. In phase 1
clinical trial, the therapeutic effects of ipilimumab
combined with nivolumab, an anti-PD-1 mAb and a
histone deacetylase inhibitor, was investigated in
HER2-negative breast cancer patients (The National
Clinical Trial number (NCT) 02453620). In a separate
study, ipilimumab in combination with nivolumab was
assessed in the treatment of the early stages of breast
cancer (NCT 02833233). The immunity of another
anti-CTLA-4 mAb, tremelimumab, was evaluated as a
single treatment or with anti-PD-L1 (durvalumab) in
advanced breast cancer treatment (NCT02527434 and
NCT01975831). Although CTLA-4 block is an
attractive approach for treating the breast cancer, its
immunity-related toxicity is still a matter of concern.
Because the CTLA-4 limits the T-cells colony
expansion and activation, its blocking would reduce
the required threshold for T-cell activation;
consequently, it would often be accompanied by
autoimmune intense side effects and immunity-related
ones, such as colitis, dermatitis, and hypophysitis .
PD-1 is a cell surface receptor that binds to PD-L1
(B7-H1) or PD-L2 (B7-DC) and inhibit T-cell function
in non-lymphoid and lymphoid organs*!. The PD-1
expression is easily detectable in tumor-infiltrating
lymphocytes and linked to poor prognosis*’. PD-L1
has been found to be overexpressed in breast cancer
cells and accompanied by poor prognosis, namely, the
advanced tumor grade and increased proliferation
ratel*®4,

PD-1 and PD-L1 are currently being applied for
therapeutic purposes. Pembrolizumab, an anti PD-1
human mAb, was tested in advanced TNBC patients
(NCT01848834)1*%. Expression of PD-L1 was detected
in 60% of patients. The pembrolizumab effect was
observed in 27 cases; the overall response was 18.5%,
and one patient was seen with a full response.

Atezolizumab is a human mAb that causes PD-L1
inhibition. It was examined with paclitaxel in 32
patients systematically treated for up to three years in
the previous line®. Neutropenia was observed in
40% of cases, but no fatalities were reported; anti-
tumor efficacy was found in 70% of TNBC patients.

143


http://dx.doi.org/10.52547/ibj.25.3.140
https://dor.isc.ac/dor/20.1001.1.1028852.2021.25.3.5.3
https://ibj.pasteur.ac.ir/article-1-3201-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-10-25 ]

[ DOR: 20.1001.1.1028852.2021.25.3.5.3]

[ DOI: 10.52547/ibj.25.3.140 ]

Immunotherapy of Breast Cancer Simonian et al.

Monoclonal

Antibodics Iratuzumab PD1/PD-L1
Ab 'aciz .
(mAbs) Bevacizumab —— CTLA-4
Checkpoint
Antibody-Drug  Tragtuzmab emtansine ( Kadcyla®) Sleckese
Conjugates . e
(ADCs) ARX788
MEDI-4276
Monoclonal
Antibodies and
Antibody-Drug IB"’“ (t:;"‘c" . Vaccines
Conjugate mmunotherapy
(ADCs) Monovalent HER2
Vaccine 1
Strategies Muclt
CEA
STn
Adoptive Polyvalent PANVAC
. TR T Cell Vaccine
TCR NY-ESO-1 Transfer Strategies
PIK3CA Novel Vaccine GVAX
5 Strategies
CAR HER2 DRribble
MUC1
Fig. 1. Four different immunotherapy strategies in breast cancer.
Avelumab is another completely humanized antibody reverse transcriptase) to stimulate an inherent

that has been evaluated in a clinical trial of phase 2 in
breast cancer patients®. Its ineffectiveness was
observed in 40 out of 168 patients (23.8%). While
these types of treatments have acceptable and
promising results, it should not be neglected that in
some cases, they can result in drastic side effects, e.g.,
death in several patients. Further studies are vital to
assess the risk of this type of treatment. On the other
hand, it seems that immunosuppressive mechanisms
among various patients are different, which leads to
exorbitant costs for each one. Moreover, this treatment
could have adverse effects by systematic suppression
of the immune system.

Antitumor vaccines

The aim of antitumor therapy vaccines is to attain an
extremely specific antitumor cellular immune response.
The effectiveness of antitumor vaccines is mainly rely
on the stimulation of tumor-specific T lymphocytes to
detect and eradicate the proliferated cancer cells®3l. In
addition, early T-cell responses could prevent tumor
recurrence by inducing long-term immune memory®.
Identifying mutated tumor antigens could assist the
expansion of personal vaccination strategy. Several
vaccine approaches, comprising of monovalent,
polyvalent, and cellular vaccines, have been assessed.
Monovalent vaccines were designed utilizing single
TAA (such as HER2, sialyl-Tn, carcinoembryonic
antigen, mucin 1, Wilms tumor gene, and telomerase
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antitumor response to aid cancer treatment®.
Although appeared to be efficacious in targeting
immune responses toward the specific antigen,
monovalent vaccines may simplify the appearance of
resistant tumor cells with decreased expression of
tumor antigen®®®). To alleviate the negative outcomes of
antigen loss, polyvalent vaccines have been developed.
These vaccines use multiple TAAs to enable more
drastic and varied antitumor responses. One example is
PANVAC (pancreatic vaccine), a recombinant
poxvirus-vector therapeutic vaccine that stimulates
immune responses against the tumor antigens
(carcinoembryonic antigen and MUC1). In phase 2
clinical study, more encouraging effects were detected
in the wvaccination group compared with the
chemotherapy-alone group (69% vs. 53%)"".
However, polyvalent vaccines could carry multiple
TAAs simultaneously. The third class of vaccines aims
to improve the delivery of TAAs through the whole
cell manufacture or cellular contents. GVAX, a
granulocyte-macrophage colong/-stimulating factor
gene-transfected tumor vaccine®®. A phase 2 study
was performed with GVAX in combination with
cyclophosphamide and trastuzumab in HER2-negative
metastatic breast cancer (NCT00971737). Anti-tumor
vaccines are recognized as an effective strategy for
treating breast cancer and indicate spectacular features
with acceptable toxicity profiles. However, there are
limitations for these vaccines, namely, the imperfect
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antitumor immune response which is inadequate for
tumor elimination™*®”. The downsides of major
histocompatibility complex in peptide vaccines are that
each vaccine is used in a group of patients with
expression  of  specific HLA  molecules®®!.
Systemically, injected peptides bind to non-
professional APCs, which could lead to tolerance
because of inefficient stimulation. In addition, the
effectiveness of the vaccine is greatly affected by the
very short half-life of peptides in the body®?

Overall, it is necessary to identify a set of antigens
associated with tumor in each individual to optimize
the production of stronger and more specific anticancer
cells; for instance, vaccines. Targeting multiple
antigens in these strategies is crucial not only to
prevent the loss of the antigen due to selective pressure
but also to enhance the chances of inducing immune
memory that prevents metastasis and recurrence of the
tumor. Eventually, although antitumor vaccines would
bring immunity for breast cancer patients, their
effectiveness is less than expected.

Adoptive T-cell transfer therapy

Transmission of selected T cells contains the
extraction of patient T cells and also the genetic or
chemical alteration to increase their act|V|ty with the
aim of creating antitumor immunity®. It has been
observed that in a single tumor sample, there is a
different population of lymphocytes with various

antigenic characteristics and phenotypic
populations®. Extraction and manipulations to
stimulate tumor-infiltrated lymphocytes did not

indicate posmve clinical effects in immunotherapy of
breast cancer®. Improvements in molecular biology
and genetic engineering have resulted in the
development of two new types of ACTs: (1) TCR gene
transfer and (2) CAR gene transfer.

TCR

Gene transfer technology helps to develop new
strategies in ACT category. Effector lymphocytes are
made by the fusion of the patient's T cells with genes
that encodes antigen receptors. These cells have the
capability of eliminating tumor in vivo®. The T-cells
redirection is achieved by expressing an antigen-
specific TCR on cell surface, providing a recognition
signal for T cells, followed by a co-stimulatory
signal to regulate the T cells activation against tumors.
TCRs may have better function to transform
cancer therapeutics compared to tumor-infiltrating
lymphocyte-strategies since they have enhanced tumor
specificity and the possibility of clinically relevant
doses of the production of these therapeutic cells.
These approaches could generate more efficient T cells

Iran. Biomed. J. 25 (3): 140-156

for targeting tumors without requirement for a new T-
cell activation overcoming the central and peripheral
tolerance fundamental limitations’®. A TCR may
target either intracellular (it could add to the pool of
potential targets) or extracellular antigen in the context
of S|gn|f|cant major histocompatibility complex
presentatlon 1A cancer testis antigen, NY-ESO-1, is
expressed in 10% of TNBCs and has been revealed to
be effectlvely targeted with TCR transfer immuno-
therapy®. Targeting PIK3CA, a common driver
oncogene using genetlcall7y redirected T cells,
eradicated target cancer cellst

CAR

CAR T cells consists of an antibody-binding domain
and a cell signaling domain. Elements that enhance T-
cell perswtence and activity are also included in CAR
constructst™. CARs specific for a broad range of
antigens have been developed and effective treatment
of breast cancer with these reported in several in vivo
studies. Different CAR T-cells targeting, mucin 1,
folate receptors and HER2 -MUC1 are available 274,
Adoptive cell therapy is a personal-centered therapy
and the choice of different approaches and is strongly
influenced by each patient’s condition. Such treatments
require complex preparations and procedures for each
patient, Ion7g5 -term cell culture, experts, and patient
preparation”™. Moreover, immune cells from cancer
patients show different phenotypes when compared
to healthy donors. One of the challenges in
using patient’s leukocytes is that the T cells and
dendritic cells obtained from cancer patients cannot
function properly in many cases. Additionally, whether
they can create a desired anti-tumor immunity or not is
of concern!™

Adoptive immunotherapy with mAbs and ADCs
mADbs have been developed over the past two
decades. Trastuzumab was the first mAb targeting the
extracellular HER2 cell domain, leading to the
cessation of mitogen-activated protein kinase and
PI3K/AKT intracellular signaling in the in vivo and in
vitro environment. This antlbodg/ was finally received
approval from FDA in 1998”1 Unfortunately, only
one-third of patients with HER2 ampllflcatlon respond
to this treatment”. Genetic changes such as
decreased expression or mutations in HER2!®%, and the
PIK3CA downstream mutation or PTEN loss of
functlon could affect the response to the anti-HER2
agent®#2. Bevacizumab was another mAb that could
regulate angiogenesis and tumor survival against
VEGF®. However, angiogenesis inhibitors have not
been successful in treating breast cancer. Failure to
target angiogenesis is one of the most significant
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experiments in late 2000 clearly showing that
angiogenesis is not a central mechanism for the
disseminated tumor cells or micrometastatic disease.
Pertuzumab is a type of human monoclonal 1gG
antibody and has therapeutic confirmation in
combination with trastuzumab for HER2-positive
metastatic breast cancer patients®®!. Meanwhile, mAbs
activate the immune response to kill cancer cells. For
instance, opsonized epithelial tumor cells by
trastuzumab could be Kkilled through antibody-
dependent cytotoxicity via natural killer cell®%.
However, de novo mutations occur in 65% of patients,
and 70% of the patients who initially respond to
treatment eventually become resistant!®”’.

The tyrosine kinase receptor family EGFR plays an
important role in tumor formation. Evidence has shown
that prescribing two inhibitors against EGFR or ErbB2
family works in perfect harmony and significantly
increases antitumor activity. For instance, combination
therapy with trastuzumab and lapatinib, an EGFR/
HER2 dual inhibitor, results in perfect cessation of
BT474 breast cancer cells. These studies have also
been extended to HER2-positive MCF7 breast cancer
model®!,

PIBK/AKT/mTOR is a key pathway in breast cancer.
Everolimus and Palbociclib are proven anti-mTOR and
anti-CDK4/6, respectively, which can be used to treat
both ER-positive and HER2-negative breast cancer®”.
However, everolimus treatment can cause negative
feedback to IRS-1/IRS-2, thus activating mTORC2 and
AKT downstream signals®®. Furthermore, the toxicity
of the PI3K pathway inhibitor and the reduction of
total survival are needed to be considered™®!.
Regrettably, no targeted treatment other than standard
chemotherapy for triple-negative breast cancer is
recommended. This type of breast cancer is extremely
invasive and requires continuous angiogenesis at all
stages of tumor growth and expansion. Anti-vascular
endothelial growth factor mAbs, bevacizumab, were
confirmed by FDA; however, it was excluded due to its
limited effect on the general survival of patients®*®*l.
None of the anti-VEGF antibodies, ramucirumab,
tyrosine kinase inhibitors, sunitinib, and sorafenib are
effective in improving the survival of TNBC patient in
phase 3 of clinical trial®*®!. In addition, disappointing
results from EGFR and cetuximab antibodies have
been reported in clinical trials for TNBC!®®*"],

In the majority of cases, a specific mutation or a
signaling pathway is targeted. Unfortunately these
signal transmission pathway inhibitors are moderately
efficient. Evidence has suggested a very low survival
rate in several weeks or months, if metastatic condition
is present, which is due to the significant limitations of
current targeted therapiest®. Reasons for internal
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resistance to targeted drugs include temporary
antitumor activity, lack of attention to heterogeneity
among patients, and heterogeneity in the tumor itself,
as well as the lack of comprehensive insights into how
cancer genomes and molecular networks regulate gene
expression®®®!. Moreover, large molecules such as
mAbs have a poor distribution due to their high
molecular weight, which this could be an explanation
for the difficult treatment of large solid cancerous
tumors by mAbs'®. To overcome these challenges,
targeted therapies have emerged in the form of
antibody-drug  conjugates. Cytotoxic drugs are
supposed to bind to antibodies via chemical linkers.
The carrier antibody could detect cancerous antigen
cells and deliver the conjugated drug to those
cells™®*1%  ADCs are assumed perfect delivery
systems for cytotoxic antitumor drugs™®!. Key factors
for ADC development include the selection of the
target antigen and the features of linker between the
antibody complex and the drug. Other important
factors are comprised of drug to antibody ratio and the
effects of drug conjugation on antibody function. The
first FDA approved ADC was in 2001 for acute
myeloid leukemia patients. Gemtuzumab ozogamicin
with the brand name of Mylotarg® was removed from
the market in June 2010. In 2017, the product was re-
introduced to the US market™®J. The second and third
ADCs offered to the commercial market were
Brentuximab vedotin with the brand name of
Adcetris® and Trastuzumab emtansine with the brand
name of Kadcyla. Brentuximab vedotin was approved
for patients with Hodgkin's lymphoma on August 19,
20112%1 while Trastuzumab emtansine was affirmed
for metastatic breast cancer patients in February
2013M%!. The newest ADC, Inotuzumab ozogamicin,
with the trade name of Besponsa®, entered the market
by European Commission for the treatment of adults
with lung, acute lymphoblastic leukemia. Inotuzumab
ozogamicin was later confirmed on August 17, 2017,
for treating adults with lung, acute lymphoblastic
leukemia or resistance to acute lymphoblastic
leukemial®®™. As breast cancer will remain a global
public health problem for women in the future®, ADC
could expand new methods and techniques in efficient
treatments of breast cancer. Among 15 ADCs currently
being evaluated for breast cancer, seven cases target
the HER2. The HER2 recipient is one of the four
receptors from the EGFR family and a protein receptor
consisting of one extracellular domain and one
intracellular domain. ADCs can be exceptionall}/
effective in breast cancer with HER2 expression™®,
HER2 expression in tumor differs from normal tissue
and increases in 20-25% breast cancer cases™. To
date, Kadcyla® is the only ADC approved for HER2-

Iran. Biomed. J. 25 (3): 140-156


http://dx.doi.org/10.52547/ibj.25.3.140
https://dor.isc.ac/dor/20.1001.1.1028852.2021.25.3.5.3
https://ibj.pasteur.ac.ir/article-1-3201-en.html

[ Downloaded from ibj.pasteur.ac.ir on 2025-10-25 ]

[ DOR: 20.1001.1.1028852.2021.25.3.5.3]

[ DOI: 10.52547/ibj.25.3.140 ]

Simonian et al.

Immunotherapy of Breast Cancer

positive metastatic breast cancer that has previously
been treated with trastuzumab and taxane. T-DMI is
composed of trastuzumab (humanized 1gG1l),
conjugated with DM1, via an SMCC linker. T-DM1
has an average drug-antibody ratio of 3.5 |n
these studies, T-DMI, an active drug with high
tolerability, has shown a strong antigen activity in
laboratory conditions, indicating an acceptable
pharmacokinetic profile in xenograft samples of human
tumor™™*. T-DMI active catabolite (Lys-SMCC-DM1)
demonstrates strong activity after antigen-dependent
entry and antibody lysosomal degradation. However,
Lys-SMCC-DM1 has poor membrane permeability,
explaining why it has the least bystander properties. In
addition, 50% of metastatic breast cancer patients do
not reply to this treatment™?. Similarly, there are
significant demands for the presentation of newer
conjugates for HER2-positive tumors and other types
of breast cancer.

There are six HER2-based ADCs in clinical trials
aimed to improve the activity and maintain or enhance
the T-DM1 immunity. Moreover, the utilization of the
following cytotoxic drugs with different actions has
been assessed: DS-8201a for the transmission of
exatecan, a  topoisomerase inhibitor*****  and
SYD985!M 718 3 DNA-alkylating drug™®*?%  as well
as ADCT-502 for the transmission  of
pyrrolobenzodiazepine that enters DNA minor
groovest*?4.

ARX788

ARX788 is an ADC with site specifically conjugated
drug, an inseparable linker, and a combination of a
linker and a cytotoxic drug that has amberstatin.
Amberstatin (AS269) contains monomethyl auristatin
F linked to a short polyethylene glycol spacert™?.
Preclinical ARX788 studies have shown activity in
different xenograft models, such as ovarian and
trastuzumab-resistant breast cancer.

MEDI-4276

Targeting HER2 can be carried out by both targeting
different epitopes in HER2, as well as utilizing other
cytotoxic drugs*?***. MEDI-4276 is completely a
human 1gG connected to a different epitope of HER2.
This ADC is in the phase 1 of clinical trial in breast
and gastric cancer patients.

XMT-1522

XMT-1522 wuses a polystyrene-based polymer
(Fleximer®) that significantly increases the Ioadin? of
the cytotoxic drug on the antibody (DAR 12-15)M%!
The used mAb, XMT-1519, is attached to HER2
epitope different from those targeted by trastuzumab

Iran. Biomed. J. 25 (3): 140-156

The drug used in XMT-1519 is a new auristatin having
a unique medicinal property.

DS8201-a

DS8201 is an anti-HER2 human mAb conjugated
with topoisomerase | inhibitor, DXd. This ADC shows
a cell-related HER2 toxicity effect in laboratory
conditions in pancreatic, breast, and gastric cancer
cells. Human model studies have also indicated HER2-
specific activity in tumors with heterogeneous
expression of HER2MM*™®!, This ADC has entered in
phase 1 of clinical trial. SYD985 contains conjugated
trastuzumab connected to duocarmycin through
maleimide coupling to inter-chain disulfides. The main
difference in this ADC, in comparison with TDM-I, is
the use of a degradable linker and DNA destructive
agent. Duocarmycins are strong DNA alkylating agents
that bind to the DNA groove and cause adenine N3
alkylation™"!. Peptide degradable linkers have good
systemic stability. Proteolytic release occurs via
cathepsin B and L, creating a self-decomposing short-
lived intermediate. This ADC has entered phase 1 of
clinical trial in solid cancers, which then enters the
expansion phase in HER2-positive tumors.

ADCT-502 is an ADC with engineered trastuzumab
attached to highly cytotoxic PBD-
based linker-drug tesirine. ADCT-502 is currently
being evaluated in patients with solid tumors
expressing HER2 in phase 1 of clinical trial. Other
ADCs, with different targets and in the final stages of
clinical trials are as follows:

Glembatumumab vedotin

GPNMB is a transmembrane glycoprotein that its
role in cancer is complicated; It acts like a tumor
suppressor or has a function in the cancer progression.
In cancer, GPNMB overexpression is found in
different types of tumors, including melanoma, breast,
lung, and osteosarcoma, when compared to normal
tissuest'?*#1In  breast cancer, GPNMB gene
expression is associated with reduced overall survival.
GPNMB overexpression is observed in both TNBC
and basal cancers, which is associated with poor
prognosis*”.

Glembatumumab vedotin (CDX-011) is an anti-
GPNMB ADC containing an 1gG2 connected to a
microtubule inhibitor, MMAE™, through a vc
linker™?33In a study of phase 2 clinical trials in
patients with advanced cancer or local metastasis of
breast cancer, Glembatumumab vedotin had more
acceptable results when comparing to chemotherapy.
Additionally, it had fewer side effects in patients with
less stimulation of bleeding, itching, neuropathy, and
alopecia™*.
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IMMU-132

The TROP-2 is a membrane glycoprotein
overexpressed in a variety of tumors, including breast
cancers. Excessive expression of TROP-2 is observed
in invasive disease, linked with drug resistance and
poor prognosis®®* ™ IMMU-132  (Sacituzumab
govitecan) is an anti-TROP-2 ADC consisting of one
IgG1 anti-TROP-2 mAb (hRS7) and one
topoisomerase inhibitor. Unlike other ADCs, SN-38, is
a topoisomerase | inhibitor having a moderate effect
(nM) when comparing to other drugs currently used in
ADC (<200 pM). Second, its releasing mechanism is
dependent on acid, which exerts through a benzyl
carbonate bond to SN-38’s lactone ring. This linker
contains a short sequence of PEG and a lysine residual,
making it relatively polar in nature. It would likely
explain the high level of 7.6 DAR in this ADC, which
is twice the current ADCs. In PH near 5.3 of lysozyme
(37 centigrade), 50% of the drug is released in 13
hours. IMMU- 132 preclinical models have shown
specific antigen activity against TROP- 2-expressing

cells in different in vitro and in vivo*®*%],

SAR566658

CA6 is a tumor-related antigen and one
sialoglycotope of MUCL. It is thought that it results
from inappropriate MUC1 glycolysis™®. The CA6
cancer-related glycotype is observed in most normal
tissues at low levels, whereas its overexpression has
been found in many solid tumors, including 30% of
breast cancer cases™*'*”. SAR566658 contains an
anti-CA6 (huDS6) antibody that binds to a non-polar
S—methyI—DM4 drug through a stable disulfide
bond™*. Two methyl groups close to disulfide in these
linkers are to prevent the breakdown of the linker by
free thiols in the bloodstream, while allowing the
breakdown in the existence of a much higher level of
glutathione and cysteine inside the cytosol or
nucleus*?. This ADC has indicated an acceptable
immune and antitumor activity during phase 1 of
clinical trial in acceleration dose of patient’s different
solid tumors with CA6 (more than 30% of tumor cells)
expression™?. One phase 2 clinical trial is being
conducted in TNBC patients with CA6 expression
(NCT 02984683). Numerous ADCs are involved in
phase 1 trials targeting breast tumor-related antigens.

LIV-1

LIV-1 (SLC39A6) is a transmembrane protein that
transports zinc into cells™*. LIV-1 regulates estrogen
in breast cancer, which its expression has been linked
to tumor development and metastasis™*>¢.  LIv-1
expression is associated with E-cadherin decrease and
may play a role in epithelial-mesenchymal
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transmission and increased metastasis™"**®!. The anti-
mLIV2 mouse mAb precisely binds to an extracellular
N-terminus epitope of LIV-1. Complementarity-
determining region grafting was used to produce anti-
LIV-1 human IgG1, named hLIV22. ADC guided to
the (SGN-LIV1A) LIV1 side is produced by hLIV22
mAb connection to a MMAE (an analog auristatin) via
endogenous cysteine. SGN-LIV1A leads to the
elimination of ER- and LIV1-positive MCF7 breast
cancer cells, as well as BR0555, which is a xenograft
tumor of the breast cell™*. SGN-LIV1A alone and in
combination  with  trastuzumab are currently
undergoing phase 1 clinical trial in patients with
metastatic breast cancer expressing LI1V1.

PTKY

PTKY is identified as the colon carcinoma kinase 4, a
highly protected PTK that plays an important role in
Wnt signaling. In breast cancer, PTK7 is more
expressed in ER-negative tumors than in ER-positive
tumors. Moreover, PTK7 suppression through siRNA
leads to severe inhibition of human ER-negative breast
cancer growth™™. An anti-PTK ADC with average
DAR of 4, alongside a conjugated h6M24, human
(IgG1) mAab, is connected to Aur0101, an auristatin
analog, using a decomposable linker (vc-PABC). This
ADC is called h6 M24-vc-0101 or PF-06647020.
Aur0101 is specifically designed to maintain cellular
potential and oxidative metabolism faster than
MMAE™Y. Increased clearance of this cytotoxic drug
may reduce systemic toxicity and increase ADC
therapeutic indicators. PF-06647020 produces antigen-
dependent cytotoxicity in PTK7-expressive cells,
leading to the cessation of cell mitosis and destruction
of the microtubule. Studies in TNBC models of
NOD/SCID rats have shown a high anti-tumor activity
of this ADC. Preclinical anti-tumor activity of
acceptable immunity and PF-06647020
pharmacokinetic profiles lead to the entrance of ADC
to the first phase of clinical trial studies in patients with
advanced solid tumors and different expressions of
PTKY. Later, it entered to cohort studies in TNBC,
non-small-cell lung cancer, and ovarian cancer
patients*>2,

LAMP-1

LAMP-1 (CD107a) and LAMP-2 are transmembrane
type | proteins, accounting for about 50% of all
lysosomal membrane proteins®. In normal cells,
LAMP-1 is normally expressed in lysosomes, though it
is transferred to the surface of tumor cells, where its
expression level is associated with invasion and
metastasis of different types of tumors**4. SAR428926
is a LAMP1 ADC in which Ab-1 is connected to the
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LAMP1 luminal domain. This antibody does not detect
LAMPL1 in normal tissue cells. SAR428926 connects to
DM4 using a decomposable link, N-succinimidyl-4-(2-
pyridyldithio) butanoate. SAR428926 assessment of
subcutaneous patient-derived xenograft mouse models
indicate increased antigen-dependent anti-tumor
activity, including shrinkage of breast, prostate,
colorectal, lung, and ovarian tumors. The reported
activity is related to the LAMP-1 level of expression
and the tumor model sensitivity to the DM4>>%%] p.
cadherin has a major role in calcium-dependent cell-
cell adhesion. It is expressed during growth and also in
normal myoepithelial/basal cells of adults and
epithelial tumors. In a normal breast, P-cadherin is
involved in maintaining the breast epithelium structural
integrity in the adult tissues of basal layer and
hair follicles™" ). In breast cancer, P-cadherin
overexpression is related to the invasive power of
tumors and is a hallmark of poor prognosis™.
PCA062 is an anti-P-cadherin ADC in which an IgG1
is connected to a maytansinoid DMI. PCA 062 is
rapidly internalized inside the cell and then lysosome,
leading to antigen-dependent cell toxicity. PCA062
ADC has anti-tumor activity in breast and bladder
cancer xenograft modelsi®®®. At present, PCA062 is
evaluated in phase 1 clinical trial in TNBC patients
with P-cadherin expression.

EphA4

Ephrin receptors, from RTK family, have an
increased expression in tumors and are related to the
development of different types of tumors, including
breast, pancreatic and lung cancer*®**? Expression
profiles of PDX models show an increase in the EphA4
expression of TNBC tumors, as compared with
adjacent natural breast tissue and other breast cancer
subtypest*®®. PF-06647263 is an anti-EphA4 ADC in
which calicheamicin, DNA destructive agent, binds to
an 1gG1, anti-EphA4 mAb. It has been introduced to
the  market as  Mylotarg®  (Gemtuzumab
ozogamicin)*%,

Conclusions and future directions

Immunotherapy has shown great potential for breast
cancer treatment, demonstrating the possibility of
utilizing the immune system for clinical benefit in this
malignancy.  The  developments in  targeted
immunotherapy have led to clinical advances in the
treatment of breast tumors. In near-term future, the
advances in combination immunotherapies can alter
breast cancers from immunologically cold tumors to
immune-activated lesions ready for response to
immunotherapy. Several strategies that utilize
molecular targeted agents to boost breast cancer-

Iran. Biomed. J. 25 (3): 140-156

specific immunity are under rapid development. In
addition, combinatorial approaches that act on the
compensatory pathways in resistant lesions may
markedly raise hope on the effectiveness and duration
of response to immune-based breast cancer prevention.
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