Volume 24, Issue 5 (9-2020)                   IBJ 2020, 24(5): 288-294 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Menbari M, Rahimi K, Ahmadi A, Mohammadi-Yeganeh S, Elyasi A, Darvishi N, et al . Association of HDAC8 Expression with Pathological Findings in Triple Negative and Non-Triple Negative Breast Cancer: Implications for Diagnosis. IBJ 2020; 24 (5) :288-294
URL: http://ibj.pasteur.ac.ir/article-1-3115-en.html
Background: Previous data have shown the tumorigenicity roles of histone deacetylase 8 (HDAC 8) in breast cancer. More recently, the oncogenic effects of this molecule have been revealed in triple negative breast cancer (TNBC). The present study aimed to determine the diagnostic value of HDAC8 for the differentiation of TNBC from nTNBC tumors. Methods: A total of 50 cancerous and normal adjacent tumor specimens were obtained, and the clinical and pathological findings of studied subjects were recorded. The expression of HDAC8 gene was determined by qRT-PCR. Also, immunohistochemical staining was performed on tissue samples. Results: Our results showed that the expression of HDAC8 in breast cancer tissues was significantly higher than the normal adjacent tissues (p = 0.0011). HDAC8 expression was also observed to be higher in TNBC patients than nTNBC group (p = 0.0013). In addition, in the TNBC group, there was a significant association between the HDAC8 overexpression and tumor characteristics, including tumor size (p = 0.039), lymphatic invasion (p = 0.01), tumor grade (p = 0.02), and perineural invasion (p < 0.05). The cut-off value was fixed at 0.6279 r.u., and the corresponding sensitivity and specificity were found to be 73.91% and 70.37%, respectively. Conclusion: According to the findings, among the other markers, HDAC8 oncogene may be used as a potential tumor marker in the diagnosis of TNBC tumors.
Type of Study: Full Length/Original Article | Subject: Cancer Biology

1. Benson JR, Jatoi I. The global breast cancer burden. Future oncology 2012; 8(6): 697-702. [DOI:10.2217/fon.12.61]
2. Otaghvar HA, Hosseini M, Tizmaghz A, Shabestanipour G, Noori H. A review on metastatic breast cancer in iran. Asian pacific journal of tropical biomedicine 2015; 5(6): 429-433. [DOI:10.1016/j.apjtb.2015.02.001]
3. Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in iran and compare to other countries: A review article. Iran journal public health 2018; 47(3): 309-316.
4. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-752. [DOI:10.1038/35021093]
5. Malla RR, Kumari S, Gavara MM, Badana AK, Gugalavath S, Kumar DKG, Rokkam P. A perspective on the diagnostics, prognostics, and therapeutics of microRNAs of triple-negative breast cancer. Biophysical reviews 2019; 11: 227-234. [DOI:10.1007/s12551-019-00503-8]
6. Yin WJ, Lu JS, Di GH, Lin YP, Zhou LH, Liu GY, Wu J, Shen KW, Han QX, Shen ZZ, Shao ZM. Clinicopathological features of the triple-negative tumors in chinese breast cancer patients. Breast cancer research and treatment 2009; 115 (2): 325-333. [DOI:10.1007/s10549-008-0096-0]
7. Valentin MD, da Silva SD, Privat M, Alaoui-Jamali M, Bignon YJ. Molecular insights on basal-like breast cancer. Breast cancer research and treatment 2012; 134(1): 21-30. [DOI:10.1007/s10549-011-1934-z]
8. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 2017; 389(10087): 2430-2442. [DOI:10.1016/S0140-6736(16)32454-0]
9. Jhan JR, Andrechek ER. Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics 2017; 18(17): 155-1609. [DOI:10.2217/pgs-2017-0117]
10. Bhat SA, Majid S, Wani HA, Rashid S. Diagnostic utility of epigenetics in breast cancer-A review. Cancer treatment and research communications 2019; 19: 100125. [DOI:10.1016/j.ctarc.2019.100125]
11. DeVaux RS, Herschkowitz JI. Beyond DNA: The role of epigenetics in the premalignant progression of breast cancer. Journal mammary gland biology neoplasia 2018; 23(4): 223-235. [DOI:10.1007/s10911-018-9414-2]
12. Temian DC, Pop LA, Irimie AI, Berindan-Neagoe I. The epigenetics of triple-negative and basal-like breast cancer: current knowledge. Journal breast cancer 2018; 21(3): 233-243. [DOI:10.4048/jbc.2018.21.e41]
13. Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug discovery today 2019; 24(3): 685-702. [DOI:10.1016/j.drudis.2019.02.003]
14. Zucchetti B, Shimada AK, Katz A, Curigliano G. The role of histone deacetylase inhibitors in metastatic breast cancer. Breast 2019; 43: 130-134. [DOI:10.1016/j.breast.2018.12.001]
15. Cao LL, Song X, Pei L, Liu L, Wang H, Jia M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer: A meta-analysis. Medicine (Baltimore) 2017; 96(31): e7663. [DOI:10.1097/MD.0000000000007663]
16. Qiao W, Liu H, Liu R, Liu Q, Zhang T, Guo W, Li P, Deng M. Prognostic and clinical significance of histone deacetylase 1 expression in breast cancer: A meta-analysis. Clinica chimica acta 2018; 483: 209-215. [DOI:10.1016/j.cca.2018.05.005]
17. Mishra VK, Wegwitz F, Kosinsky RL, Sen M, Baumgartner R, Wulff T, Siveke JT, Schildhaus HU, Najafova Z, Kari V, Kohlhof H, Hessmann E, Johnsen SA. Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner. Nucleic acids research 2017; 45(11): 6334-6349. [DOI:10.1093/nar/gkx212]
18. Heimburg T, Kolbinger FR, Zeyen P, Ghazy E, Herp D, Schmidtkunz K, Melesina J, Shaik TB, Erdmann F, Schmidt M, Romier C, Robaa D, Witt O, Oehme I, Jung M, Sippl W. Structure-based design and biological characterization of selective histone deacetylase 8 (HDAC8) inhibitors with anti-neuroblastoma activity. Journal medicinal chemistry 2017; 60(24): 10188-10204. [DOI:10.1021/acs.jmedchem.7b01447]
19. Amin SA, Adhikari N, Jha T. Structure-activity relationships of HDAC8 inhibitors: non-hydroxamates as anticancer agents. Pharmacol research 2018; 131: 128-142. [DOI:10.1016/j.phrs.2018.03.001]
20. Elston C. Classification and grading of invasive breast carcinoma. Verhandlungen der deutschen gesellschaft fur Pathologie 2005; 89: 35-44.
21. Edge SB, Compton CC. The american joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology 2010; 17(6): 1471-1474. [DOI:10.1245/s10434-010-0985-4]
22. Zarei F, Menbari MN, Ghaderi B, Abdi M, Vahabzadeh Z. Higher risk of progressing breast cancer in kurdish population associated to CDH1 -160 C/A polymorphism. EXCLI journal 2017; 16: 1198-1205.
23. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic acids research 2009; 37(6): e45. [DOI:10.1093/nar/gkp045]
24. Tuomi JM, Voorbraak F, Jones DL, Ruijter JM. Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 2010; 50(4): 313-322. [DOI:10.1016/j.ymeth.2010.02.003]
25. Nikkhoo B, Sigari N, Ghaderi B, Afkhamzadeh A, Azadi NA, Mohsenpour B, Fathi F, Abdi M. Diagnostic utility of adenosine deaminase in serum and bronchoalveolar lavage fluid for screening lung cancer in western iran. Journal of medical biochemistry 2013; 32(2): 109-115. [DOI:10.2478/jomb-2013-0011]
26. Guo X, Ruan H, Li X, Qin L, Tao Y, Qi X, Gao J, Gan L, Duan S, Shen W. Subcellular localization of class I histone deacetylases in the developing xenopus tectum. Front cell neurosci 2015; 9: 510. [DOI:10.3389/fncel.2015.00510]
27. Ha SD, Han CY, Reid C, Kim SO. HDAC8-mediated epigenetic reprogramming plays a key role in resistance to anthrax lethal toxin-induced pyroptosis in macrophages. Journal immunol 2014; 193(3): 1333-1343. [DOI:10.4049/jimmunol.1400420]
28. An P, Li J, Lu L, Wu Y, Ling Y, Du J, Chen Z, Wang H. Histone deacetylase 8 triggers the migration of triple negative breast cancer cells via regulation of YAP signals. European journal of pharmacology 2019; 845: 16-23. [DOI:10.1016/j.ejphar.2018.12.030]
29. Wu S, Luo Z, Yu PJ, Xie H, He YW. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals. Biological chemistry 2016; 397(1): 75-83. [DOI:10.1515/hsz-2015-0215]
30. Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, Park CG, Kang J. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncology reports 2011; 25(6): 1677-1681. [DOI:10.3892/or.2011.1236]
31. Hsieh CL, Ma HP, Su CM, Chang YJ, Hung WY, Ho YS, Huang WJ, Lin RK. Alterations in histone deacetylase 8 lead to cell migration and poor prognosis in breast cancer. Life sciences 2016; 151: 7-14. [DOI:10.1016/j.lfs.2016.02.092]
32. Wang ZT, Chen ZJ, Jiang GM, Wu YM, Liu T, Yi YM, Zeng J, Du J, Wang HS. Histone deacetylase inhibitors suppress mutant p53 transcription via HDAC8/YY1 signals in triple negative breast cancer cells. Cell signal 2016; 28(5): 506-515. [DOI:10.1016/j.cellsig.2016.02.006]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Biomedical Journal

Designed & Developed by : Yektaweb